A094438 Triangular array T(n,k) = Fibonacci(k+3)*C(n,k), k=0..n, n>=0.
2, 2, 3, 2, 6, 5, 2, 9, 15, 8, 2, 12, 30, 32, 13, 2, 15, 50, 80, 65, 21, 2, 18, 75, 160, 195, 126, 34, 2, 21, 105, 280, 455, 441, 238, 55, 2, 24, 140, 448, 910, 1176, 952, 440, 89, 2, 27, 180, 672, 1638, 2646, 2856, 1980, 801, 144, 2, 30, 225, 960, 2730, 5292, 7140, 6600, 4005, 1440, 233
Offset: 0
Examples
First few rows: 2; 2 3; 2 6 5; 2 9 15 8; 2, 12, 30, 32, 13; 2, 15, 50, 80, 65, 21;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Crossrefs
Programs
-
GAP
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+3) ))); # G. C. Greubel, Oct 30 2019
-
Magma
[Binomial(n,k)*Fibonacci(k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
Maple
with(combinat); seq(seq(fibonacci(k+3)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
Mathematica
Table[Fibonacci[k+3]Binomial[n,k],{n,0,12},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 16 2017 *)
-
PARI
T(n,k) = binomial(n,k)*fibonacci(k+3); for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
Sage
[[binomial(n,k)*fibonacci(k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
Formula
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n,k)*Fibonacci(k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = Fibonacci(n-3). (End)
Comments