cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109995 Number of unlabeled ordered minimal T_0-covers of an n-set, cf. A094545.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 86, 549, 4647, 52060, 772976, 15240116, 400345371, 14063594530, 663256392496, 42161077371566, 3625838175218123, 423372648479289300, 67333725775723184308, 14628921614102655999804, 4352732830667872529962044
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, Sep 01 2005

Keywords

Programs

  • Mathematica
    Table[Sum[Binomial[2^m-m-1, n-m], {m,0,n}], {n, 0, 50}] (* G. C. Greubel, Oct 08 2017 *)
  • PARI
    for(n=0,50, print1(sum(m=0,n, binomial(2^m -m -1, n-m)), ", ")) \\ G. C. Greubel, Oct 08 2017

Formula

a(n) = Sum_{m=0..n} binomial(2^m-m-1, n-m).

A094544 Triangle of a(n,m) = number of m-member minimal T_0-covers of an n-set (n >= 0, 0<= m <=n).

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 0, 16, 1, 0, 0, 0, 120, 55, 1, 0, 0, 0, 480, 1650, 156, 1, 0, 0, 0, 840, 34650, 13650, 399, 1, 0, 0, 0, 0, 554400, 873600, 89376, 960, 1, 0, 0, 0, 0, 6985440, 45208800, 14747040, 514080, 2223, 1, 0, 0, 0, 0, 69854400, 1989187200
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 08 2004

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.

Examples

			1;
0, 1;
0, 0, 1;
0, 0, 3,   1;
0, 0, 0,  16,    1;
0, 0, 0, 120,   55,   1;
0, 0, 0, 480, 1650, 156, 1;
...
		

Crossrefs

Cf. A035348, A046165, A094545 (row sums), A094546 (column sums).

Programs

  • Mathematica
    Flatten[Table[n!/m! Binomial[2^m-m-1,n-m],{n,0,10},{m,0,n}]] (* Harvey P. Dale, Jan 16 2012 *)

Formula

a(n, m) = n!/m!*binomial(2^m-m-1, n-m).
E.g.f.: Sum_{n>=0} y^n*(1+y)^(2^n-n-1)*x^n/n!.

A094546 Number of n-member minimal T_0-covers.

Original entry on oeis.org

1, 1, 4, 1457, 112632827396, 158158632767281777075441633086607, 6800377846899806825426438402771408584453689087636553015800284773113817943589005365456
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, May 08 2004

Keywords

Comments

A cover of a set is a T_0-cover if for every two distinct points of the set there exists a member (block) of the cover containing one but not the other point.

Crossrefs

Column sums of A094544.

Programs

  • Mathematica
    Table[Sum[(m!/n!)*Binomial[2^n - n - 1, m - n], {m, n, 2^n - 1}], {n, 0, 5}] (* G. C. Greubel, Oct 07 2017 *)
  • PARI
    for(n=0,5, print1(sum(m=n,2^n -1, (m!/n!)*binomial(2^n-n-1, m-n)), ", ")) \\ G. C. Greubel, Oct 07 2017

Formula

a(n) = Sum_{m=n..2^n-1} m!/n!*binomial(2^n-n-1, m-n).
Showing 1-3 of 3 results.