A094554 Number of closed walks of length n at a base vertex of a truncated tetrahedron (triangular prism).
1, 0, 3, 2, 19, 30, 143, 322, 1179, 3110, 10183, 28842, 89939, 262990, 802623, 2380562, 7196299, 21479670, 64657463, 193535482, 581480259, 1742693150, 5231574703, 15687733602, 47077181819, 141203583430, 423666674343
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- N. L. Biggs, R. M. Damerell, and D. A. Sands, Recursive families of graphs, Journal of Combinatorial Theory Series B Volume 12 (1972), 123-131.
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 3.
- Index entries for linear recurrences with constant coefficients, signature (2,5,-6).
Programs
-
Mathematica
LinearRecurrence[{2, 5, -6}, {1, 0, 3, 2}, 30] (* Greg Dresden, Jun 19 2021 *)
-
PARI
a(n) = if(n==0, 1, (1 + 3^n + 2*(-2)^n)/6) \\ Andrew Howroyd, Jun 14 2021
Formula
G.f.: (1 - 2*x - 2*x^2 + 2*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 1/6 + 3^n/6 + (-2)^n/3 for n > 0.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-2*x)*(1 + exp(2*x))*(2 + exp(3*x))/6. - Stefano Spezia, Sep 26 2023
Comments