cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094573 Triangle T(n,k) giving number of (<=2)-covers of an n-set with k blocks.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 12, 20, 7, 1, 39, 169, 186, 59, 3, 1, 120, 1160, 2755, 2243, 661, 55, 1, 363, 7381, 33270, 52060, 33604, 9167, 910, 15, 1, 1092, 45500, 367087, 988750, 1126874, 601262, 151726, 16401, 525, 1, 3279, 276529, 3873786, 17005149
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 12 2004

Keywords

Comments

Cover of a set is (<=2)-cover if every element of the set is covered with at most two blocks of the cover.

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1,   3,    1;
  1,  12,   20,    7;
  1,  39,  169,  186,   59,   3;
  1, 120, 1160, 2755, 2243, 661, 55;
  ...
		

Crossrefs

Row sums give A094574.

Programs

  • Mathematica
    rows = 9; m = rows + 2;
    egf = Exp[-x - (x^2/2)*(Exp[y]-1)]*Sum[Exp[y*Binomial[n+1, 2]]*(x^n/n!), {n, 0, m}];
    cc = CoefficientList[# + O[x]^m, x]& /@ CoefficientList[egf + O[y]^m, y];
    (Range[0, Length[cc]-1]! * cc)[[1 ;; rows]] /. {0, a__} :> {a} // Flatten (* Jean-François Alcover, May 13 2019 *)

Formula

E.g.f.: exp(-x-x^2/2*(exp(y)-1))*(Sum_{n>=0} exp(y*binomial(n+1, 2))*x^n/n!).