cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A094574 Number of (<=2)-covers of an n-set.

Original entry on oeis.org

1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0

Views

Author

Goran Kilibarda, Vladeta Jovovic, May 12 2004

Keywords

Comments

Also the number of strict multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. For example, the a(2) = 5 strict multiset partitions of {1, 1, 2, 2} are (1122), (1)(122), (2)(112), (11)(22), (1)(2)(12). - Gus Wiseman, Jul 18 2018

Examples

			From _Gus Wiseman_, Sep 02 2019: (Start)
These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are:
  {123}  {1}{23}    {1}{2}{3}     {1}{2}{3}{12}
         {2}{13}    {1}{2}{13}    {1}{2}{3}{13}
         {3}{12}    {1}{2}{23}    {1}{2}{3}{23}
         {1}{123}   {1}{3}{12}    {1}{2}{13}{23}
         {12}{13}   {1}{3}{23}    {1}{2}{3}{123}
         {12}{23}   {2}{3}{12}    {1}{3}{12}{23}
         {13}{23}   {2}{3}{13}    {2}{3}{12}{13}
         {2}{123}   {1}{12}{23}
         {3}{123}   {1}{13}{23}
         {12}{123}  {1}{2}{123}
         {13}{123}  {1}{3}{123}
         {23}{123}  {2}{12}{13}
                    {2}{13}{23}
                    {2}{3}{123}
                    {3}{12}{13}
                    {3}{12}{23}
                    {12}{13}{23}
                    {1}{23}{123}
                    {2}{13}{123}
                    {3}{12}{123}
(End)
		

Crossrefs

Row n=2 of A219585. - Alois P. Heinz, Nov 23 2012
Dominated by A003465.
Graphs with vertex-degrees <= 2 are A136281.
Main diagonal of A346517.

Programs

  • Mathematica
    facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *)
    m = 20;
    a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}];
    egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m;
    CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)

Formula

Row sums of A094573.
E.g.f: exp(-1-1/2*(exp(x)-1))*Sum(exp(x*binomial(n+1, 2))/n!, n=0..infinity) or exp((1-exp(x))/2)*Sum(A094577 (n)*(x/2)^n/n!, n=0..infinity).

A060092 Triangle T(n,k) of k-block ordered bicoverings of an unlabeled n-set, n >= 2, k = 3..n+floor(n/2).

Original entry on oeis.org

3, 7, 16, 12, 63, 125, 90, 18, 162, 722, 1716, 1680, 25, 341, 2565, 11350, 27342, 29960, 7560, 33, 636, 7180, 49860, 208302, 503000, 631512, 302400, 42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400
Offset: 2

Views

Author

Vladeta Jovovic, Feb 26 2001

Keywords

Comments

All columns are polynomials of order binomial(k, 2). - Andrew Howroyd, Jan 30 2020

Examples

			[3],
[7, 16],
[12, 63, 125, 90],
[18, 162, 722, 1716, 1680],
[25, 341, 2565, 11350, 27342, 29960, 7560],
[33, 636, 7180, 49860, 208302, 503000, 631512, 302400],
[42, 1092, 17335, 173745, 1099602, 4389875, 10762299, 14975730, 9632700, 1247400], ...
There are 23=7+16 ordered bicoverings of an unlabeled 3-set: 7 3-block bicoverings and 16 4-block bicoverings, cf. A060090.
		

Crossrefs

Row sums are A060090.
Columns k=3..7 are A055998(n-1), A060091, A060093, A060094, A060095.

Programs

  • PARI
    \\ gives g.f. of k-th column.
    ColGf(k) = k!*polcoef(exp(-x - x^2*y/(2*(1-y)) + O(x*x^k))*sum(j=0, k, 1/(1-y)^binomial(j, 2)*x^j/j!), k) \\ Andrew Howroyd, Jan 30 2020
    
  • PARI
    T(n)={my(m=(3*n\2), y='y + O('y^(n+1))); my(g=serlaplace(exp(-x - x^2*y/(2*(1-y)) + O(x*x^m))*sum(k=0, m, 1/(1-y)^binomial(k, 2)*x^k/k!))); Mat([Col(p/y^2, -n) | p<-Vec(g)[2..m+1]])}
    { my(A=T(8)); for(n=2, matsize(A)[1], print(A[n, 3..3*n\2])) } \\ Andrew Howroyd, Jan 30 2020

Formula

E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x-x^2/2*y/(1-y))*Sum_{k=0..inf} 1/(1-y)^binomial(k, 2)*x^k/k!.
Showing 1-2 of 2 results.