A094574 Number of (<=2)-covers of an n-set.
1, 1, 5, 40, 457, 6995, 136771, 3299218, 95668354, 3268445951, 129468914524, 5868774803537, 301122189141524, 17327463910351045, 1109375488487304027, 78484513540137938209, 6098627708074641312182, 517736625823888411991202, 47791900951140948275632148
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Sep 02 2019: (Start) These are set-systems covering {1..n} with vertex-degrees <= 2. For example, the a(3) = 40 covers are: {123} {1}{23} {1}{2}{3} {1}{2}{3}{12} {2}{13} {1}{2}{13} {1}{2}{3}{13} {3}{12} {1}{2}{23} {1}{2}{3}{23} {1}{123} {1}{3}{12} {1}{2}{13}{23} {12}{13} {1}{3}{23} {1}{2}{3}{123} {12}{23} {2}{3}{12} {1}{3}{12}{23} {13}{23} {2}{3}{13} {2}{3}{12}{13} {2}{123} {1}{12}{23} {3}{123} {1}{13}{23} {12}{123} {1}{2}{123} {13}{123} {1}{3}{123} {23}{123} {2}{12}{13} {2}{13}{23} {2}{3}{123} {3}{12}{13} {3}{12}{23} {12}{13}{23} {1}{23}{123} {2}{13}{123} {3}{12}{123} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Crossrefs
Programs
-
Mathematica
facs[n_]:=facs[n]=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[facs[Array[Prime,n,1,Times]^2],UnsameQ@@#&]],{n,0,6}] (* Gus Wiseman, Jul 18 2018 *) m = 20; a094577[n_] := Sum[Binomial[n, k]*BellB[2 n - k], {k, 0, n}]; egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m; CoefficientList[egf + O[x]^m, x]*Range[0, m-1]! (* Jean-François Alcover, May 13 2019 *)
Comments