cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094640 Decimal expansion of the "alternating Euler constant" log(4/Pi).

Original entry on oeis.org

2, 4, 1, 5, 6, 4, 4, 7, 5, 2, 7, 0, 4, 9, 0, 4, 4, 4, 6, 9, 1, 0, 3, 6, 8, 9, 1, 5, 6, 3, 2, 9, 4, 4, 2, 4, 5, 0, 3, 7, 0, 5, 4, 5, 5, 8, 0, 5, 1, 9, 8, 9, 3, 6, 7, 2, 7, 7, 3, 6, 9, 4, 7, 5, 1, 4, 6, 4, 9, 4, 7, 4, 0, 5, 4, 5, 6, 3, 3, 5, 1, 4, 2, 8, 1, 0, 3, 3, 8, 3, 7, 1, 7, 3, 4, 7, 6, 6, 7, 3, 8, 1, 9, 9, 3
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of Sum_{n>=1} (-1)^{n-1} (1/n - log(1 + 1/n)) (see Sondow 2005), so in comparison to A001620's sum formula, log(4/Pi) is an "alternating Euler constant."

Examples

			log(4/Pi) = 0.24156447527...
		

References

  • George Boros and Victor Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.
  • Jonathan Borwein and Peter Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); Log(4/Pi(R)); // G. C. Greubel, Aug 28 2018
  • Mathematica
    RealDigits[ Log[4/Pi], 10, 111][[1]]
  • PARI
    log(4/Pi) \\ Charles R Greathouse IV, Jun 06 2011
    

Formula

Equals Integral_{x=0..1, y=0..1} (x-1)/((1+x*y)*log(x*y)). (see Sondow 2005).
Equals -Integral_{x=0..1} (1-x)^2 dx/((1+x^2)*log(x)). - Amiram Eldar, Jun 29 2020
From Petros Hadjicostas, Jun 29 2020: (Start)
Equals Integral_{x=0..1} (1 - x + log(x))/((1 + x)*log(x)) dx. (Let u = x*y and v = y in Sondow's double integral and integrate w.r.t. v.)
Equals Integral_{x=0..1, y=0..1} (1 - x*y)^2/((1 + x^2*y^2)*(log(x*y))^2). (Apply Glasser's (2019) Theorem 1 on Amiram Eldar's integral above.) (End)
Equals Integral_{0..Pi/2} (sec(t)-2/(Pi-2*t)) dt. - Clark Kimberling, Jul 10 2020
Equals -Sum_{k>=1} log(1 - 1/(2*k+1)^2). - Amiram Eldar, Jul 06 2023

A126388 Denominators in a series for the "alternating Euler constant" log(4/Pi).

Original entry on oeis.org

2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 78, 79, 80, 81, 86, 87, 90, 91, 92
Offset: 2

Views

Author

Jonathan Sondow, Jan 01 2007

Keywords

Comments

All n > 1 such that (# of 1's) != (# of 0's) in the base 2 expansion of floor(n/2). The numerators of the series are A126389.

Examples

			floor(13/2) = 6 = 110 base 2, which has (# of 1's) = 2 != 1 = (#
of 0's), so 13 is a member.
		

Crossrefs

Complementary to A066879.

Programs

  • Mathematica
    b[n_] := DigitCount[n,2,1] - DigitCount[n,2,0]; L = {}; Do[If[b[Floor[n/2]] != 0, L = Append[L,n]], {n,2,100}]; L

Formula

log(4/Pi) = 1/2 - 1/3 + 2/6 - 2/7 - 1/8 + 1/9 + 1/10 - 1/11 + 1/12 - 1/13 + 3/14 - 3/15 - 2/16 + 2/17 + 2/22 - ...

A126389 Numerators in a series for the "alternating Euler constant" log(4/Pi).

Original entry on oeis.org

1, -1, 2, -2, -1, 1, 1, -1, 1, -1, 3, -3, -2, 2, 2, -2, 2, -2, 2, -2, 4, -4, -3, 3, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 3, -3, -1, 1, 1, -1, 1, -1, 3, -3, 1, -1, 3, -3, 3, -3, 5, -5, -4, 4, -2, 2, -2, 2, -2, 2, 2, -2, -2, 2, 2, -2, 2, -2, 2, -2, 4, -4, -2, 2
Offset: 2

Views

Author

Jonathan Sondow, Jan 01 2007

Keywords

Comments

Nonzero values of (-1)^n*b(floor(n/2)) for n > 1, where b(n) = (# of 1's) - (# of 0's) in the base 2 expansion of n. The denominators of the series are A126388.

Examples

			floor(15/2) = 7 = 111 base 2, which has (# of 1's) - (# of 0's) = 3, so (-1)^15*3 = -3 is a term.
		

Crossrefs

Programs

  • Mathematica
    b[n_] := DigitCount[n,2,1] - DigitCount[n,2,0]; L = {}; Do[If[b[Floor[n/2]] != 0, L = Append[L,(-1)^n*b[Floor[n/2]]]], {n,2,100}]; L

Formula

Log(4/Pi) = 1/2 - 1/3 + 2/6 - 2/7 - 1/8 + 1/9 + 1/10 - 1/11 + 1/12 - 1/13 + 3/14 - 3/15 - 2/16 + 2/17 + 2/22 - ...
Showing 1-3 of 3 results.