cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A001620 Decimal expansion of Euler's constant (or the Euler-Mascheroni constant), gamma.

Original entry on oeis.org

5, 7, 7, 2, 1, 5, 6, 6, 4, 9, 0, 1, 5, 3, 2, 8, 6, 0, 6, 0, 6, 5, 1, 2, 0, 9, 0, 0, 8, 2, 4, 0, 2, 4, 3, 1, 0, 4, 2, 1, 5, 9, 3, 3, 5, 9, 3, 9, 9, 2, 3, 5, 9, 8, 8, 0, 5, 7, 6, 7, 2, 3, 4, 8, 8, 4, 8, 6, 7, 7, 2, 6, 7, 7, 7, 6, 6, 4, 6, 7, 0, 9, 3, 6, 9, 4, 7, 0, 6, 3, 2, 9, 1, 7, 4, 6, 7, 4, 9
Offset: 0

Views

Author

Keywords

Comments

Yee (2010) computed 29844489545 decimal digits of gamma.
Decimal expansion of 0th Stieltjes constant. - Paul Muljadi, Aug 24 2010
The value of Euler's constant is close to (18/Pi^2)*Sum_{n>=0} 1/4^(2^n) = 0.5770836328... = (6/5) * A082020 * A078585. - Arkadiusz Wesolowski, Mar 27 2012

Examples

			0.577215664901532860606512090082402431042...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 24, 259-262.
  • S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 28-40, 166, 365.
  • C. F. Gauss, Disquisitiones Arithmeticae, Yale, 1965; see p. 359.
  • B. Gugger, Problèmes corrigés de Mathématiques posés aux concours des Ecoles Militaires, Ecole de l'Air, 1992, option MP, 1ère épreuve, Ellipses, 1993, pp. 167-184.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.3 Infinite Series, pp. 273-274.
  • J. Havil, Gamma: Exploring Euler's Constant, Princeton Univ. Press, 2003.
  • J.-M. Monier, Analyse, Exercices corrigés, 2ème année, MP, Dunod, Exercice 4.3.14, pages 371 and 387, 1997.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 166.
  • Joel L. Schiff, The Laplace Transform: Theory and Applications, Springer-Verlag New York, Inc. (1999). See p. 44.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 1, equation 1:7:5 at page 13.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 28.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1990.

Crossrefs

Cf. A002852 (continued fraction).
Cf. A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A231095 (power tower using this constant).
Denote the generalized Euler constants, also called Stieltjes constants, by Sti(n).
Sti(0) = A001620 (Euler's constant gamma) (cf. A262235/A075266),
Sti(1/2) = A301816, Sti(1) = A082633 (cf. A262382/A262383), Sti(3/2) = A301817,
Sti(2) = A086279 (cf. A262384/A262385), Sti(3) = A086280 (cf. A262386/A262387),
Sti(4) = A086281, Sti(5) = A086282, Sti(6) = A183141, Sti(7) = A183167,
Sti(8) = A183206, Sti(9) = A184853, Sti(10) = A184854.

Programs

  • Magma
    EulerGamma(250); // G. C. Greubel, Aug 21 2018
    
  • Maple
    Digits := 100; evalf(gamma);
  • Mathematica
    RealDigits[ EulerGamma, 10, 105][[1]] (* Robert G. Wilson v, Nov 01 2004 *)
    (1/2) N[Sum[PolyGamma[0, 1/2 + 2^k] - PolyGamma[0, 2^k], {k, 0, Infinity }], 30] (* Dimitri Papadopoulos, Nov 30 2016 *)
  • PARI
    default(realprecision, 20080); x=Euler; d=0; for (n=0, 20000, x=(x-d)*10; d=floor(x); write("b001620.txt", n, " ", d));  \\ Harry J. Smith, Apr 15 2009
    
  • Python
    from sympy import S
    def aupton(digs): return [int(d) for d in str(S.EulerGamma.n(digs+2))[2:-2]]
    print(aupton(99)) # Michael S. Branicky, Nov 22 2021

Formula

Limit_{n->oo} (1 + 1/2 + ... + 1/n - log(n)) (definition).
Sum_{n>=1} (1/n - log(1 + 1/n)), since log(1 + 1/1) + ... + log(1 + 1/n) telescopes to log(n+1) and lim_{n->infinity} (log(n+1) - log(n)) = 0.
Integral_{x=0..1} -log(log(1/x)). - Robert G. Wilson v, Jan 04 2006
Integral_{x=0..1,y=0..1} (x-1)/((1-x*y)*log(x*y)). - (see Sondow 2005)
Integral_{x=0..oo} -log(x)*exp(-x). - Jean-François Alcover, Mar 22 2013
Integral_{x=0..1} (1 - exp(-x) - exp(-1/x))/x. - Jean-François Alcover, Apr 11 2013
Equals the lim_{n->oo} fractional part of zeta(1+1/n). The corresponding fractional part for x->1 from below, using n-1/n, is -(1-a(n)). The fractional part found in this way for the first derivative of Zeta as x->1 is A252898. - Richard R. Forberg, Dec 24 2014
Limit_{x->1} (Zeta(x)-1/(x-1)) from Whittaker and Watson. 1990. - Richard R. Forberg, Dec 30 2014
exp(gamma) = lim_{i->oo} exp(H(i)) - exp(H(i-1)), where H(i) = i-th Harmonic number. For a given n this converges faster than the standard definition, and two above, after taking the logarithm (e.g., 13 digits vs. 6 digits at n=3000000 or x=1+1/3000000). - Richard R. Forberg, Jan 08 2015
Limit_{n->oo} (1/2) Sum_{j>=1} Sum_{k=1..n} ((1 - 2*k + 2*n)/((-1 + k + j*n) (k + j*n))). - Dimitri Papadopoulos, Jan 13 2016
Equals 25/27 minus lim_{x->oo} 2^(x+1)/3 - (22/27)*(4/3)^x - Zeta(Sum_{i>=1} (H_i/i^x)), letting H_i denote the i-th harmonic number. - John M. Campbell, Jan 29 2016
Limit_{x->0} -B'(x), where B(x) = -x zeta(1-x) is the "Bernoulli function". - Jean-François Alcover, May 20 2016
Sum_{k>=0} (1/2)(digamma(1/2+2^k) - digamma(2^k)) where digamma(x) = d/dx log(Gamma(x)). - Dimitri Papadopoulos, Nov 14 2016
Using the abbreviations a = log(z^2 + 1/4)/2, b = arctan(2*z) and c = cosh(Pi*z) then gamma = -Pi*Integral_{0..oo} a/c^2. The general case is for n >= 0 (which includes Euler's gamma as gamma_0) gamma_n = -(Pi/(n+1))* Integral_{0..oo} sigma(n+1)/c^2, where sigma(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(n,2*k)*b^(2*k) *a^(n-2*k). - Peter Luschny, Apr 19 2018
Limit_{s->0} (Zeta'(1-s)*s - Zeta(1-s)) / (Zeta(1-s)*s). - Peter Luschny, Jun 18 2018
log(2) * (gamma - (1/2) * log(2)) = -Sum_{v >= 1} (1/2^(v+1)) * (Delta^v (log(w)/w))|{w=1}, where Delta(f(w)) = f(w) - f(w + 1) (forward difference). [This is a formula from Lerch (1897).] - _Petros Hadjicostas, Jul 21 2019
From Amiram Eldar, Jul 05 2020: (Start)
Equals Integral_{x=1..oo} (1/floor(x) - 1/x) dx.
Equals Integral_{x=0..1} (1/(1-x) + 1/log(x)) dx = Integral_{x=0..1} (1/x + 1/log(1-x)) dx.
Equals -Integral_{-oo..oo} x*exp(x-exp(x)) dx.
Equals Sum_{k>=1} (-1)^k * floor(log_2(k))/k.
Equals (-1/2) * Sum_{k>=1} (Lambda(k)-1)/k, where Lambda is the Mangoldt function. (End)
Equals Integral_{0..1} -1/LambertW(-1,-x*exp(-x)) dx = 1 + Integral_{0..1} LambertW(-1/x*exp(-1/x)) dx. - Gleb Koloskov, Jun 12 2021
Equals Sum_{k>=2} (-1)^k * zeta(k)/k. - Vaclav Kotesovec, Jun 19 2021
Equals lim_{x->oo} log(x) - Sum_{p prime <= x} log(p)/(p-1). - Amiram Eldar, Jun 29 2021
Limit_{n->oo} (2*HarmonicNumber(n) - HarmonicNumber(n^2)). After answer by Eric Naslund on Mathematics Stack Exchange, on Jun 21 2011. - Mats Granvik, Jul 19 2021
Equals Integral_{x=0..oo} ( exp(-x) * (1/(1-exp(-x)) - 1/x) ) dx (see Gugger or Monier). - Bernard Schott, Nov 21 2021
Equals 1/2 + Limit_{s->1} (Zeta(s) + Zeta(1/s))/2. - Thomas Ordowski, Jan 12 2023
Equals Sum_{j>=2} Sum_{k>=2} ((k-1)/(k*j^k)). - Mike Tryczak, Apr 06 2023
From Stefano Spezia, Oct 27 2024: (Start)
Equals Sum_{n>=1} n*(zeta(n+1) - 1)/(n + 1) [Euler] (see Finch at p. 30).
Equals lim_{n->oo} Sum_{prime p<=n} log(p/(p - 1)) - log(log(n)) (see Finch at p. 31). (End)
Equals lim_{s->1} zeta(s) - zeta(s)^2/zeta(2*s - 1)/2. - Mats Granvik, Jul 07 2025

A037861 (Number of 0's) - (number of 1's) in the base-2 representation of n.

Original entry on oeis.org

1, -1, 0, -2, 1, -1, -1, -3, 2, 0, 0, -2, 0, -2, -2, -4, 3, 1, 1, -1, 1, -1, -1, -3, 1, -1, -1, -3, -1, -3, -3, -5, 4, 2, 2, 0, 2, 0, 0, -2, 2, 0, 0, -2, 0, -2, -2, -4, 2, 0, 0, -2, 0, -2, -2, -4, 0, -2, -2, -4, -2, -4, -4, -6, 5, 3, 3, 1, 3, 1, 1, -1, 3
Offset: 0

Views

Author

Keywords

Comments

-Sum_{n>=1} a(n)/((2*n)*(2*n+1)) = the "alternating Euler constant" log(4/Pi) = 0.24156... - (see A094640 and Sondow 2005, 2010).
a(A072600(n)) < 0; a(A072601(n)) <= 0; a(A031443(n)) = 0; a(A072602(n)) >= 0; a(A072603(n)) > 0; a(A031444(n)) = 1; a(A031448(n)) = -1; abs(a(A089648(n))) <= 1. - Reinhard Zumkeller, Feb 07 2015

Crossrefs

Cf. A031443 for n when a(n)=0, A053738 for n when a(n) odd, A053754 for n when a(n) even, A030300 for a(n+1) mod 2.
See A268289 for a recurrence based on this sequence.

Programs

  • Haskell
    a037861 n = a023416 n - a000120 n  -- Reinhard Zumkeller, Aug 01 2013
    
  • Maple
    A037861:= proc(n) local L;
         L:= convert(n,base,2);
         numboccur(0,L) - numboccur(1,L)
    end proc:
    map(A037861, [$0..100]); # Robert Israel, Mar 08 2016
  • Mathematica
    Table[Count[ IntegerDigits[n, 2], 0] - Count[IntegerDigits[n, 2], 1], {n, 0, 75}]
  • PARI
    a(n) = if (n==0, 1, 1 + logint(n, 2) - 2*hammingweight(n)); \\ Michel Marcus, May 15 2020 and Jun 16 2020
  • Python
    def A037861(n):
        return 2*format(n,'b').count('0')-len(format(n,'b')) # Chai Wah Wu, Mar 07 2016
    

Formula

From Henry Bottomley, Oct 27 2000: (Start)
a(n) = A023416(n) - A000120(n) = A029837(n) - 2*A000120(n) = 2*A023416(n) - A029837(n).
a(2*n) = a(n) + 1; a(2*n + 1) = a(2*n) - 2 = a(n) - 1. (End)
G.f. satisfies A(x) = (1 + x)*A(x^2) - x*(2 + x)/(1 + x). - Franklin T. Adams-Watters, Dec 26 2006
a(n) = b(n) for n > 0 with b(0) = 0 and b(n) = b(floor(n/2)) + (-1)^(n mod 2). - Reinhard Zumkeller, Dec 31 2007
G.f.: 1 + (1/(1 - x))*Sum_{k>=0} x^(2^k)*(x^(2^k) - 1)/(1 + x^(2^k)). - Ilya Gutkovskiy, Apr 07 2018

A002852 Continued fraction for Euler's constant (or Euler-Mascheroni constant) gamma.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, 1, 65, 1, 4, 7, 11, 1, 399, 2, 1, 3, 2, 1, 2, 1, 5, 3, 2, 1, 10, 1, 1, 1, 1, 2, 1, 1, 3, 1, 4, 1, 1, 2, 5, 1, 3, 6, 2, 1, 2, 1, 1, 1, 2, 1, 3, 16, 8, 1, 1, 2, 16, 6, 1, 2, 2, 1, 7, 2, 1, 1, 1, 3, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

The first 970258158 terms were computed by Eric W. Weisstein on Sep 21 2011 using a developmental version of Mathematica.
The first 4851382841 terms were computed by Eric W. Weisstein on Jul 22 2013 using a developmental version of Mathematica.
The first 16695279010 terms were computed by Syed Fahad on Apr 29 2021, see link.

Examples

			0.577215664901532860606512090082402431042...
0 + 1/(1 + 1/(1 + 1/(2 + 1/(1 + 1/(2 + 1/(1 + 1/(4 + 1/(3 + 1/(13 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 3.
  • R. S. Lehman, A Study of Regular Continued Fractions. Report 1066, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, Feb 1959.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001620, the decimal expansion, which has many more references.
See also A073004 (exp(gamma)) and A094640 ("alternating Euler constant").
Cf. A033091 (incrementally largest terms), A033092 (positions of incrementally largest terms).
Cf. A033149 (positions of first occurrence of n in the continued fraction).

Programs

  • Magma
    ContinuedFraction(EulerGamma(100)); // Vincenzo Librandi, Oct 19 2017
  • Mathematica
    ContinuedFraction[EulerGamma, 100]
  • PARI
    default(realprecision, 11000); x=contfrac(Euler); for (n=0, 10000, write("b002852.txt", n, " ", x[n+1])) \\ Harry J. Smith, Apr 14 2009
    

Extensions

More terms from Robert G. Wilson v, Dec 08 2000

A084254 Decimal expansion of Sum_{k>=1} 1/(k*(exp(2*Pi*k)-1)).

Original entry on oeis.org

0, 0, 1, 8, 7, 2, 6, 8, 2, 4, 4, 9, 7, 6, 8, 5, 4, 6, 1, 1, 5, 6, 3, 8, 5, 7, 9, 4, 7, 9, 9, 6, 1, 3, 9, 8, 8, 6, 9, 1, 6, 2, 8, 9, 5, 6, 5, 2, 6, 1, 9, 5, 6, 3, 8, 4, 1, 3, 3, 1, 5, 7, 4, 5, 3, 7, 8, 8, 4, 3, 1, 9, 5, 1, 7, 0, 9, 8, 0, 2, 2, 6, 7, 5, 1, 7, 0, 7, 2, 7, 8, 4, 0, 2, 4, 5, 6, 7, 9, 7, 9, 9, 8, 7
Offset: 0

Views

Author

Benoit Cloitre, Jun 21 2003

Keywords

Examples

			0.00187268244976854611563857947996139886916289565261...
		

References

  • Bruce C. Berndt, Ramanujan Notebook part II, Infinite series, Springer Verlag, 1989, pp. 280-281.

Crossrefs

Cf. A255695 (S(1,1)), A255697 (S(1,4)), A255698 (S(3,1)), A255699 (S(3,2)), A255700 (S(3,4)), A255701 (S(5,1)), A255702 (S(5,2)), A255703 (S(5,4)).

Programs

  • Mathematica
    digits = 104; S[1, 2] = NSum[1/(n*(Exp[2*Pi*n] - 1)), {n, 1, Infinity}, WorkingPrecision -> digits+10, NSumTerms -> digits]; RealDigits[S[1, 2], 10, digits] // First (* Jean-François Alcover, Mar 02 2015 *)
    Join[{0,0},RealDigits[Log[4/Pi]/4 - Pi/12 + Log[Gamma[3/4]], 10, 100][[1]]] (* Amiram Eldar, May 21 2022 *)
  • PARI
    1/4*log(4/Pi)-Pi/12+log(gamma(3/4))

Formula

Equals log(4/Pi)/4 - Pi/12 + log(Gamma(3/4)).
From Jean-François Alcover, Mar 02 2015: (Start)
This is the case k=1, m=2 of the Plouffe sum S(k,m) = Sum_{n >= 1} 1/(n^k*(exp(m*Pi*n)-1)).
Pi = 72*S(1,1) - 96*S(1,2) + 24*S(1,4). (End)
Equals Sum_{k>=1} sigma(k)/(k*exp(2*Pi*k)). - Amiram Eldar, Jun 05 2023

A110625 Numerator of b(n) = -Sum_{k=1..n} A037861(k)/((2*k)*(2*k+1)), where A037861(k) = (number of 0's) - (number of 1's) in the binary representation of k.

Original entry on oeis.org

1, 1, 3, 101, 5807, 77801, 82949, 170636, 170636, 170636, 363113, 363113, 84848, 710567, 22435781, 3901243741, 27210449083, 1003538672911, 248595095590537, 10165684261926701, 438167567023512863, 439119040574907047
Offset: 1

Views

Author

Jonathan Sondow, Aug 01 2005

Keywords

Comments

Numerators of partial sums of a series for the "alternating Euler constant" log(4/Pi) (see A094640 and Sondow 2005, 2010). Denominators are A110626.

Examples

			a(3) = 3 because b(3) = 1/6 + 0 + 1/21 = 3/14.
The first few fractions b(n) are 1/6, 1/6, 3/14, 101/504, 5807/27720, 77801/360360, 82949/360360, ... = A110625/A110626. - _Petros Hadjicostas_, May 15 2020
		

Crossrefs

Programs

  • PARI
    a(n) = numerator(-sum(k=1, n, (#binary(k) - 2*hammingweight(k))/(2*k*(2*k+1)))); \\ Petros Hadjicostas, May 15 2020

Formula

Lim_{n -> infinity} b(n) = log 4/Pi = 0.24156...

A110626 Denominator of b(n) = -Sum_{k=1..n} A037861(k)/((2*k)*(2*k+1)), where A037861(k) = (number of 0's) - (number of 1's) in the binary representation of k.

Original entry on oeis.org

6, 6, 14, 504, 27720, 360360, 360360, 765765, 765765, 765765, 1601145, 1601145, 369495, 3061530, 94907430, 16703707680, 116925953760, 4326260289120, 1068586291412640, 43812037947918240, 1883917631760484320
Offset: 1

Views

Author

Jonathan Sondow, Aug 01 2005

Keywords

Comments

Denominators of partial sums of a series for the "alternating Euler constant" log(4/Pi) (see A094640 and Sondow 2005, 2010). Numerators are A110625.

Examples

			a(3) = 14 because b(3) = 1/6 + 0 + 1/21 = 3/14.
The first few fractions b(n) are 1/6, 1/6, 3/14, 101/504, 5807/27720, 77801/360360, 82949/360360, ... = A110625/A110626. - _Petros Hadjicostas_, May 15 2020
		

Crossrefs

Programs

  • PARI
    a(n) = denominator(-sum(k=1, n, (#binary(k) - 2*hammingweight(k))/(2*k*(2*k+1))));\\ Petros Hadjicostas, May 15 2020

Formula

Lim_{n -> infinity} b(n) = log 4/Pi = 0.24156...

A094641 Continued fraction for the "alternating Euler constant" log(4/Pi).

Original entry on oeis.org

0, 4, 7, 6, 3, 1, 1, 9, 1, 1, 4, 26, 1, 2, 4, 1, 9, 1, 20, 3, 1, 12, 1, 2, 7, 1, 5, 2, 1, 5, 3, 1, 1, 1, 4, 1, 1, 57, 1, 2, 1, 8, 8, 1, 1, 1, 1, 1, 22, 1, 1, 6, 1, 6, 6, 1, 3, 1, 4, 2, 2, 2, 4, 1, 1, 2, 1, 19, 17, 348, 1, 1, 5, 16, 2, 2, 5, 1, 5, 2, 4, 2, 5, 1, 11, 1, 1, 11, 13, 2, 1, 1, 5, 2, 1, 2, 10, 1, 2
Offset: 0

Views

Author

Keywords

Comments

See the Comments in A094640 for why log(4/Pi) is an "alternating Euler constant."

Examples

			log(4/Pi) = 0 + 1/(4 + 1/(7 + 1/(6 + 1/(3 + 1/(1 + ...)))))
		

References

  • G. Boros and V. Moll, Irresistible Integrals: Symbolics, Analysis and Experiments in the Evaluation of Integrals, Cambridge University Press, Cambridge, 2004, Chap. 7.
  • J. Borwein and P. Borwein, Pi and the AGM, John Wiley & Sons, New York, 1987, Chap. 11.

Crossrefs

Cf. A094640 (decimal expansion of log(4/Pi)).

Programs

  • Mathematica
    ContinuedFraction[ Log[4/Pi], 100]

Extensions

Offset changed by Andrew Howroyd, Aug 07 2024

A269330 Decimal expansion of the "alternating Euler constant" beta = li(2) - gamma.

Original entry on oeis.org

4, 6, 7, 9, 4, 8, 1, 1, 5, 2, 1, 5, 9, 5, 9, 9, 2, 4, 2, 3, 8, 0, 7, 6, 7, 9, 9, 1, 1, 2, 2, 1, 0, 7, 0, 5, 4, 8, 0, 4, 5, 6, 2, 4, 2, 2, 1, 1, 2, 7, 7, 9, 7, 7, 0, 2, 7, 1, 4, 1, 9, 0, 9, 1, 9, 0, 1, 4, 5, 4, 7, 8, 4, 3, 2, 6, 9, 4, 8, 5, 9, 2, 3, 5, 7, 7, 0, 3, 4, 2, 3, 3, 4, 6, 3, 6, 6, 0, 6, 7, 9, 1, 3, 8
Offset: 0

Views

Author

Keywords

Comments

The function li(x) is the integral logarithm, gamma is Euler's constant.
Decimal expansion of Sum_{n>=1} G_n/n = beta, where numbers G_n are Gregory's coefficients (see A002206 and A002207). In comparison to the Fontana-Mascheroni's series Sum_{n>=1} |G_n|/n = gamma (see A195189), the constant beta may be regarded as the "alternating Euler constant". A similar analogy also exists between gamma and log(4/Pi), see A094640.
Another striking analogy between beta and gamma follows from the fact that beta = Integral_{x=0..1} (1/log(1+x) - 1/x) dx, while gamma = Integral_{x=0..1} (1/log(1-x) + 1/x) dx.
For more details, see references below.

Examples

			0.4679481152159599242380767991122107054804562422112779...
		

Crossrefs

Programs

  • Maple
    evalf(Li(2)-gamma, 120)
    evalf(Ei(ln(2))-gamma, 120)
    evalf(int(1/ln(1+x)-1/x, x = 0..1), 120)
    evalf(ln(ln(2))+sum(ln(2)^k/(k*factorial(k)), k = 1..infinity), 120)
  • Mathematica
    RealDigits[LogIntegral[2] - EulerGamma, 10, 120][[1]]
    RealDigits[ExpIntegralEi[Log[2]] - EulerGamma, 10, 120][[1]]
    RealDigits[Integrate[1/Log[1+x] - 1/x, {x, 0, 1}], 10, 120][[1]]
    RealDigits[Log[Log[2]] + Sum[Log[2]^k/(k*k!), {k, 1, ∞}], 10, 120][[1]]
  • PARI
    default(realprecision, 120); -real(eint1(-log(2)))-Euler
    
  • PARI
    default(realprecision, 120); intnum(x=0,1,1/log(1+x)-1/x) \\ Note: PARI/GP v. 2.7.3 is able to compute only 19 digits
    
  • PARI
    default(realprecision,120); log(log(2))+sumpos(k=1,log(2)^k/(k*factorial(k)))

Formula

Equals li(2) - gamma.
Equals Ei(log(2)) - gamma.
Equals Integral_{x=0..1} (1/log(1+x) - 1/x) dx.
Equals log(log(2)) + Sum_{k>=1} log(2)^k/(k*k!).

A103130 Decimal expansion of Integrate[(1 - x)/((1 + x y) (Log[x y])^2),{y,0,1},{x,0,1}].

Original entry on oeis.org

2, 5, 6, 2, 2, 0, 0, 9, 4, 4, 7, 4, 1, 3, 6, 1, 3, 4, 7, 0, 1, 7, 9, 4, 1, 6, 2, 0, 9, 8, 6, 7, 3, 8, 8, 2, 9, 8, 6, 4, 4, 8, 8, 6, 5, 0, 4, 8, 5, 6, 8, 6, 9, 1, 2, 8, 1, 8, 1, 8, 6, 9, 6, 1, 3, 7, 9, 3, 4, 5, 2, 3, 9, 7, 7, 2, 3, 2, 2, 4, 1, 5, 7, 5, 4, 5, 5, 0, 2, 2, 3, 0, 3, 6, 4, 2, 2, 5, 1, 6, 1, 5
Offset: 0

Views

Author

Eric W. Weisstein, Jan 23 2005

Keywords

Comments

Equals Integral_{u=0..1} (u - log(u) - 1)/((1 + u)*(log(u))^2). (Let u = x*y and v = y, and integrate w.r.t. v.) - Petros Hadjicostas, Jun 13 2020

Examples

			0.256220094...
		

Crossrefs

Cf. A094640.

Programs

  • Mathematica
    RealDigits[Log[(Sqrt[Pi]*Glaisher^6)/(2^(7/6)*E)], 10, 50][[1]] (* G. C. Greubel, Mar 16 2017 *)

Formula

Log[(Sqrt[Pi]*Glaisher^6)/(2^(7/6)*E)].

A126388 Denominators in a series for the "alternating Euler constant" log(4/Pi).

Original entry on oeis.org

2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 72, 73, 78, 79, 80, 81, 86, 87, 90, 91, 92
Offset: 2

Views

Author

Jonathan Sondow, Jan 01 2007

Keywords

Comments

All n > 1 such that (# of 1's) != (# of 0's) in the base 2 expansion of floor(n/2). The numerators of the series are A126389.

Examples

			floor(13/2) = 6 = 110 base 2, which has (# of 1's) = 2 != 1 = (#
of 0's), so 13 is a member.
		

Crossrefs

Complementary to A066879.

Programs

  • Mathematica
    b[n_] := DigitCount[n,2,1] - DigitCount[n,2,0]; L = {}; Do[If[b[Floor[n/2]] != 0, L = Append[L,n]], {n,2,100}]; L

Formula

log(4/Pi) = 1/2 - 1/3 + 2/6 - 2/7 - 1/8 + 1/9 + 1/10 - 1/11 + 1/12 - 1/13 + 3/14 - 3/15 - 2/16 + 2/17 + 2/22 - ...
Showing 1-10 of 15 results. Next