cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094686 A Fibonacci convolution.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 7, 10, 17, 28, 44, 72, 117, 188, 305, 494, 798, 1292, 2091, 3382, 5473, 8856, 14328, 23184, 37513, 60696, 98209, 158906, 257114, 416020, 673135, 1089154, 1762289, 2851444, 4613732, 7465176, 12078909, 19544084, 31622993, 51167078, 82790070
Offset: 0

Views

Author

Paul Barry, May 19 2004

Keywords

Comments

Convolution of A000045 and A049347.
Diagonal sums of number triangle A116088. - Paul Barry, Feb 04 2006
Let (b(n)) be the p-INVERT of (1,1,0,0,0,0,0,0,...) using p(S) = 1 - S^2; then b(n) = a(n+1) for n >=0. See A292324. - Clark Kimberling, Sep 15 2017

Crossrefs

Programs

  • Magma
    [(Fibonacci(n+1) +((n+2) mod 3) -1)/2: n in [0..40]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    LinearRecurrence[{0,1,2,1}, {1,0,1,2}, 40] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    Vec(1/((1-x-x^2)*(1+x+x^2)) + O(x^50)) \\ Michel Marcus, Sep 27 2014
    
  • SageMath
    [(fibonacci(n+1) + (n+2)%3 - 1)/2 for n in range(41)] # G. C. Greubel, Feb 09 2023

Formula

G.f.: 1/((1-x-x^2)*(1+x+x^2)).
a(n) = 2*sqrt(3)*Sum_{k=0..n} Fibonacci(k+1)*cos((4*(n-k)+1)*Pi/6)/3.
a(n) = a(n-2) + 2*a(n-3) + a(n-4).
From Paul Barry, Jan 13 2005: (Start)
a(n) = A005252(n) - (-cos((2*n+1)*Pi/3)/2 - sqrt(3)*sin((2*n+1)*Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/6 + sin((2*n+1)*Pi/6)/2).
a(n) = Sum_{k=0..floor(n/2)} if(mod(n-k, 2)=0, binomial(n-k, k), 0).
a(n) = A093040(n-1) - Fibonacci(n). (End)
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
From Paul Barry, Feb 04 2006: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(2*k, n-2*k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(3*k,n-k)/C(3*k,k). (End)
2*a(n) = A000045(n+1) + A049347(n). - R. J. Mathar, Feb 13 2020
a(n) = (1/2)*(A000045(n+1) + A049347(n)). - G. C. Greubel, Feb 09 2023