A094686 A Fibonacci convolution.
1, 0, 1, 2, 2, 4, 7, 10, 17, 28, 44, 72, 117, 188, 305, 494, 798, 1292, 2091, 3382, 5473, 8856, 14328, 23184, 37513, 60696, 98209, 158906, 257114, 416020, 673135, 1089154, 1762289, 2851444, 4613732, 7465176, 12078909, 19544084, 31622993, 51167078, 82790070
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Elena Barcucci, Antonio Bernini, Stefano Bilotta, and Renzo Pinzani, Non-overlapping matrices, arXiv:1601.07723 [cs.DM], 2016 (see 1st column of Table 1 p. 8).
- Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 19.
- David Broadhurst, Multiple Deligne values: a data mine with empirically tamed denominators, arXiv:1409.7204 [hep-th], 2014 (see p. 10).
- Leonard Rozendaal, Pisano word, tesselation, plane-filling fractal, Preprint, 2017.
- Index entries for linear recurrences with constant coefficients, signature (0,1,2,1).
Programs
-
Magma
[(Fibonacci(n+1) +((n+2) mod 3) -1)/2: n in [0..40]]; // G. C. Greubel, Feb 09 2023
-
Mathematica
LinearRecurrence[{0,1,2,1}, {1,0,1,2}, 40] (* Jean-François Alcover, Sep 21 2017 *)
-
PARI
Vec(1/((1-x-x^2)*(1+x+x^2)) + O(x^50)) \\ Michel Marcus, Sep 27 2014
-
SageMath
[(fibonacci(n+1) + (n+2)%3 - 1)/2 for n in range(41)] # G. C. Greubel, Feb 09 2023
Formula
G.f.: 1/((1-x-x^2)*(1+x+x^2)).
a(n) = 2*sqrt(3)*Sum_{k=0..n} Fibonacci(k+1)*cos((4*(n-k)+1)*Pi/6)/3.
a(n) = a(n-2) + 2*a(n-3) + a(n-4).
From Paul Barry, Jan 13 2005: (Start)
a(n) = A005252(n) - (-cos((2*n+1)*Pi/3)/2 - sqrt(3)*sin((2*n+1)*Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/6 + sin((2*n+1)*Pi/6)/2).
a(n) = Sum_{k=0..floor(n/2)} if(mod(n-k, 2)=0, binomial(n-k, k), 0).
a(n) = A093040(n-1) - Fibonacci(n). (End)
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
From Paul Barry, Feb 04 2006: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(2*k, n-2*k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(3*k,n-k)/C(3*k,k). (End)
Comments