A291382
p-INVERT of (1,1,0,0,0,0,...), where p(S) = 1 - 2 S - S^2.
Original entry on oeis.org
2, 7, 22, 70, 222, 705, 2238, 7105, 22556, 71608, 227332, 721705, 2291178, 7273743, 23091762, 73308814, 232731578, 738846865, 2345597854, 7446508273, 23640235416, 75050038224, 238259397096, 756395887969, 2401310279090, 7623377054503, 24201736119310
Offset: 0
-
z = 60; s = x + x^2; p = 1 - 2 s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A019590 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291382 *)
A079962
Number of permutations satisfying -k <= p(i) - i <= r and p(i) - i not in I, i=1..n, with k=1, r=5, I={1,3}.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 9, 14, 22, 36, 58, 94, 153, 247, 399, 646, 1045, 1691, 2737, 4428, 7164, 11592, 18756, 30348, 49105, 79453, 128557, 208010, 336567, 544577, 881145, 1425722, 2306866, 3732588, 6039454, 9772042, 15811497, 25583539, 41395035
Offset: 0
- D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), pp. 755-770. North-Holland, Amsterdam, 1970.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vladimir Baltic, On the number of certain types of strongly restricted permutations, Applicable Analysis and Discrete Mathematics Vol. 4, No 1 (2010), 119-135
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,0,1,1).
Cf.
A002524,
A002525,
A002526,
A002527,
A002528,
A002529,
A072827,
A072850,
A072851,
A072852,
A072853,
A072854,
A072855,
A072856,
A079955 -
A080014.
-
[Round(Fibonacci(n+3)/4): n in [0..40]]; // G. C. Greubel, Jan 21 2022
-
with(combinat,fibonacci): seq(round(fibonacci(n+3)/4),n=0..38) # Mircea Merca, Jan 04 2011
-
LinearRecurrence[{1,0,1,0,1,1}, {1,1,1,2,3,5}, 41] (* G. C. Greubel, Jan 21 2022 *)
-
a(n)=fibonacci(n+3)\/4 \\ Charles R Greathouse IV, Oct 07 2015
-
[(1/4)*(fibonacci(n+3) + chebyshev_U(n,1/2) + chebyshev_U(2*n,1/2)) for n in (0..40)] # G. C. Greubel, Jan 21 2022
A093040
Expansion of (1+x)/((1+x+x^2)(1-x-x^2)).
Original entry on oeis.org
1, 1, 1, 3, 4, 6, 11, 17, 27, 45, 72, 116, 189, 305, 493, 799, 1292, 2090, 3383, 5473, 8855, 14329, 23184, 37512, 60697, 98209, 158905, 257115, 416020, 673134, 1089155, 1762289, 2851443, 4613733, 7465176, 12078908, 19544085, 31622993, 51167077
Offset: 0
G.f. = 1 + x + x^2 + 3*x^3 + 4*x^4 + 6*x^5 + 11*x^6 + 17*x^7 + 27*x^8 + 45*x^9 + ...
- MacKay, Information Theory, Inference and Learning Algorithms, CUP, 2003, p. 251
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Levi Axelrod, Nathan Bickel, Anastasia Halfpap, Luke Hawranick, Alex Parker, and Cole Swain, Statistics of maximal independent sets in grid-like graphs, arXiv:2506.22317 [math.CO], 2025. See p. 20.
- Joshua P. Bowman, Compositions with an Odd Number of Parts, and Other Congruences, J. Int. Seq (2024) Vol. 27, Art. 24.3.6. See p. 19.
- David Broadhurst, Multiple Deligne values: a data mine with empirically tamed denominators, arXiv:1409.7204 [hep-th], 2014. See p. 10.
- Leonard Rozendaal, Pisano word, tesselation, plane-filling fractal, Preprint, 2017.
- Alexander Stoimenow, Generating Functions, Fibonacci Numbers and Rational Knots, arXiv:math/0210174 [math.GT], 2002.
- Index entries for linear recurrences with constant coefficients, signature (0,1,2,1).
-
[Floor(Fibonacci(n+3)/2)-Floor(Fibonacci(n+1)/2): n in [1..50]]; // Vincenzo Librandi, Jul 10 2012
-
CoefficientList[Series[((1+x)/(1-x-x^2)+(1-x^2)/(1-x^3))/2,{x,0,50}],x] (* Vincenzo Librandi, Jul 10 2012 *)
a[ n_] := SeriesCoefficient[ If[ n < 0, x^3 (1 + x) / (1 + 2 x + x^2 - x^4), (1 + x) / (1 - x^2 - 2 x^3 - x^4)], {x, 0, Abs@n}]; (* Michael Somos, Mar 19 2014 *)
LinearRecurrence[{0, 1, 2, 1}, {1, 1, 1, 3}, 39] (* Jean-François Alcover, Sep 21 2017 *)
-
Vec(((1+x)/(1-x-x^2)+(1-x^2)/(1-x^3))/2 + O(x^50)) \\ Michel Marcus, Sep 27 2014
A113067
Expansion of -x/((x^2+x+1)*(x^2+3*x+1)); invert transform gives signed version of tetrahedral numbers A000292.
Original entry on oeis.org
0, -1, 4, -11, 28, -72, 188, -493, 1292, -3383, 8856, -23184, 60696, -158905, 416020, -1089155, 2851444, -7465176, 19544084, -51167077, 133957148, -350704367, 918155952, -2403763488, 6293134512, -16475640049, 43133785636, -112925716859, 295643364940, -774004377960
Offset: 0
- Creighton Dement, Floretion Integer Sequences (work in progress).
-
-x/((x^2+x+1)*(x^2+3*x+1)) + O[x]^30 // CoefficientList[#, x]& (* Jean-François Alcover, Jun 15 2017 *)
-
concat(0, Vec(-x / ((1 + x + x^2)*(1 + 3*x + x^2)) + O(x^30))) \\ Colin Barker, May 11 2019
-
[((lucas_number1(n,3,1)-lucas_number1(n,1,1)))/(-2) for n in range(1,32)] # Zerinvary Lajos, Jul 06 2008
A116088
Riordan array (1, x*(1+x)^2).
Original entry on oeis.org
1, 0, 1, 0, 2, 1, 0, 1, 4, 1, 0, 0, 6, 6, 1, 0, 0, 4, 15, 8, 1, 0, 0, 1, 20, 28, 10, 1, 0, 0, 0, 15, 56, 45, 12, 1, 0, 0, 0, 6, 70, 120, 66, 14, 1, 0, 0, 0, 1, 56, 210, 220, 91, 16, 1, 0, 0, 0, 0, 28, 252, 495, 364, 120, 18, 1
Offset: 0
Triangle begins as:
1;
0, 1;
0, 2, 1;
0, 1, 4, 1;
0, 0, 6, 6, 1;
0, 0, 4, 15, 8, 1;
0, 0, 1, 20, 28, 10, 1;
0, 0, 0, 15, 56, 45, 12, 1;
-
Flat(List([0..10], n->List([0..n], k-> Binomial(2*k, n-k) ))); # G. C. Greubel, May 09 2019
-
[[Binomial(2*k, n-k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
-
Flatten[Table[Binomial[2k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Oct 22 2012 *)
-
{T(n,k) = binomial(2*k, n-k)}; \\ G. C. Greubel, May 09 2019
-
[[binomial(2*k, n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
A109970
Riordan array (1,x(1-x)^2).
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 1, -4, 1, 0, 0, 6, -6, 1, 0, 0, -4, 15, -8, 1, 0, 0, 1, -20, 28, -10, 1, 0, 0, 0, 15, -56, 45, -12, 1, 0, 0, 0, -6, 70, -120, 66, -14, 1, 0, 0, 0, 1, -56, 210, -220, 91, -16, 1, 0, 0, 0, 0, 28, -252, 495, -364, 120, -18, 1
Offset: 0
Rows begin
1;
0,1;
0,-2,1;
0,1,-4,1;
0,0,6,-6,1;
0,0,-4,15,-8,1;
0,0,1,-20,28,-10,1;
0,0,0,15,-56,45,-12,1;
A113726
A Jacobsthal convolution.
Original entry on oeis.org
1, 0, 1, 4, 5, 8, 25, 44, 77, 176, 353, 660, 1365, 2776, 5417, 10876, 21981, 43648, 87153, 175076, 349669, 698280, 1398585, 2797260, 5590381, 11184720, 22373761, 44735284, 89474165, 178969208, 357910345, 715807004, 1431683837, 2863325216
Offset: 0
-
LinearRecurrence[{0,1,4,4},{1,0,1,4},40] (* Harvey P. Dale, Apr 30 2025 *)
A283834
Number of length-n binary vectors beginning with 0, ending with 1, and avoiding 4 consecutive 0's and 4 consecutive 1's.
Original entry on oeis.org
1, 0, 1, 2, 4, 6, 12, 22, 41, 74, 137, 252, 464, 852, 1568, 2884, 5305, 9756, 17945, 33006, 60708, 111658, 205372, 377738, 694769, 1277878, 2350385, 4323032, 7951296, 14624712, 26899040, 49475048, 90998801, 167372888, 307846737, 566218426, 1041438052
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Stefano Bilotta, Variable-length Non-overlapping Codes, arXiv preprint arXiv:1605.03785 [cs.IT], 2016 [See Table 2].
- Index entries for linear recurrences with constant coefficients, signature (0,1,2,3,2,1).
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/((1+x)*(1+x^2)*(1-x-x^2-x^3)) )); // G. C. Greubel, Feb 09 2023
-
CoefficientList[Series[1/((1+x)*(1+x^2)*(1-x-x^2-x^3)), {x,0,50}], x] (* Indranil Ghosh, Mar 26 2017 *)
-
Vec(1/((1+x)*(1+x^2)*(1-x-x^2-x^3)) + O(x^50)) \\ Indranil Ghosh, Mar 26 2017
-
@CachedFunction
def b(n): # b = A000073
if (n<3): return (0,0,1)[n]
else: return b(n-1) + b(n-2) + b(n-3)
def A283834(n): return (1/4)*((-1)^n +i^n*((n+1)%2) -i^(n+3)*(n%2) +2*b(n+2))
[A283834(n) for n in range(41)] # G. C. Greubel, Feb 09 2023
A283838
Irregular triangle read by rows: T(n,k) (n >= 8, 3 <= k <= floor(n/2)-1) = number of binary vectors of length <= n that start with 1^k, 0, end with 1, 0^k, and the factor between 1^k and 0^k does not contain 0^k or 1^k.
Original entry on oeis.org
1, 3, 5, 1, 9, 3, 16, 7, 1, 26, 13, 3, 43, 25, 7, 1, 71, 47, 15, 3, 115, 88, 29, 7, 1, 187, 162, 57, 15, 3, 304, 299, 111, 31, 7, 1, 492, 551, 215, 61, 15, 3, 797, 1015, 416, 121, 31, 7, 1, 1291, 1867, 802, 239, 63, 15, 3, 2089, 3435, 1547, 471, 125, 31, 7, 1, 3381, 6319, 2983, 927, 249, 63, 15, 3
Offset: 8
Triangle begins:
1,
3,
5, 1,
9, 3,
16, 7, 1,
26, 13, 3,
43, 25, 7, 1,
71, 47, 15, 3,
115, 88, 29, 7, 1,
187, 162, 57, 15, 3,
304, 299, 111, 31, 7, 1,
492, 551, 215, 61, 15, 3,
797, 1015, 416, 121, 31, 7, 1,
1291, 1867, 802, 239, 63, 15, 3,
2089, 3435, 1547, 471, 125, 31, 7, 1,
3381, 6319, 2983, 927, 249, 63, 15, 3,
5472, 11624, 5751, 1824, 495, 127, 31, 7, 1,
...
-
gf[k_] := x^(2k)(x-x^k)^2 / ((1-x)(1-x^k)(1-2x+x^k));
T[n_, k_] := SeriesCoefficient[gf[k], {x, 0, n}];
Table[T[n, k], {n, 8, 24}, {k, 3, Floor[n/2]-1}] // Flatten (* Jean-François Alcover, Apr 05 2017 *)
A124369
Riordan array (1/((1-x-x^2)(1+x+x^2)),x(1+x)/((1-x-x^2)(1+x+x^2))).
Original entry on oeis.org
1, 0, 1, 1, 1, 1, 2, 2, 2, 1, 2, 6, 4, 3, 1, 4, 9, 12, 7, 4, 1, 7, 17, 24, 21, 11, 5, 1, 10, 34, 48, 50, 34, 16, 6, 1, 17, 58, 103, 110, 91, 52, 22, 7, 1, 28, 104, 200, 250, 220, 152, 76, 29, 8, 1, 44, 188, 385, 534, 530, 400, 239, 107, 37, 9, 1
Offset: 0
Triangle begins
1,
0, 1,
1, 1, 1,
2, 2, 2, 1,
2, 6, 4, 3, 1,
4, 9, 12, 7, 4, 1,
7, 17, 24, 21, 11, 5, 1,
10, 34, 48, 50, 34, 16, 6, 1,
17, 58, 103, 110, 91, 52, 22, 7, 1
Showing 1-10 of 13 results.
Comments