cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A109971 Inverse of Riordan array (1,x(1-x)^2), A109970.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 30, 18, 6, 1, 0, 143, 88, 33, 8, 1, 0, 728, 455, 182, 52, 10, 1, 0, 3876, 2448, 1020, 320, 75, 12, 1, 0, 21318, 13566, 5814, 1938, 510, 102, 14, 1, 0, 120175, 76912, 33649, 11704, 3325, 760, 133, 16, 1, 0, 690690, 444015, 197340
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Comments

Row sums are A001764. Diagonal sums are A109972. Second column is A006013. Third column is A006629.

Examples

			Rows begin
1;
0,1;
0,2,1;
0,7,4,1;
0,30,18,6,1;
0,143,88,33,8,1;
Production array begins
0, 1
0, 2, 1
0, 3, 2, 1
0, 4, 3, 2, 1
0, 5, 4, 3, 2, 1
0, 6, 5, 4, 3, 2, 1,
0, 7, 6, 5, 4, 3, 2, 1
0, 8, 7, 6, 5, 4, 3, 2, 1
0, 9, 8, 7, 6, 5, 4, 3, 2, 1
... - _Philippe Deléham_, Mar 05 2013
		

Crossrefs

Essentially the same as A092276.

Formula

Number triangle T(0, 0)=1, T(0, k)=0, k>0, T(n, k)=(k/n)*binomial(3n-k-1, n-k) otherwise; Riordan array (1, f) where f(1-f)^2=x.
T(n, k)=sum{j=0..n, ((3j+1)/(2n+j+1))(-1)^(j-k)*C(3n, 2n+j)C(j, k)}; - Paul Barry, Oct 07 2005
T(n,k)=binomial(3n-k,n-k)*2k/(3n-k). (Paul Barry, May 18 2006)

A109972 Diagonal sums of number triangle A109970.

Original entry on oeis.org

1, 0, 1, 2, 8, 34, 162, 822, 4365, 23956, 134814, 773746, 4511693, 26652346, 159170385, 959412290, 5829083420, 35661048886, 219491344362, 1358204062536, 8444658457530, 52729475008690, 330518562341537, 2078987880103170
Offset: 0

Views

Author

Paul Barry, Jul 06 2005

Keywords

Programs

  • PARI
    a(n) = if (n==0, 1, sum(k=0, n-1, (k/(n-k))*binomial(3*n-4*k-1, n-2*k))); \\ Michel Marcus, Jan 25 2019

Formula

a(0) = 1, a(n) = Sum_{k=0..n-1} (k/(n-k))*binomial(3n-4k-1, n-2k), n>0. [corrected by Michel Marcus, Jan 25 2019]

A116088 Riordan array (1, x*(1+x)^2).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 1, 4, 1, 0, 0, 6, 6, 1, 0, 0, 4, 15, 8, 1, 0, 0, 1, 20, 28, 10, 1, 0, 0, 0, 15, 56, 45, 12, 1, 0, 0, 0, 6, 70, 120, 66, 14, 1, 0, 0, 0, 1, 56, 210, 220, 91, 16, 1, 0, 0, 0, 0, 28, 252, 495, 364, 120, 18, 1
Offset: 0

Views

Author

Paul Barry, Feb 04 2006

Keywords

Examples

			Triangle begins as:
  1;
  0, 1;
  0, 2, 1;
  0, 1, 4,  1;
  0, 0, 6,  6,  1;
  0, 0, 4, 15,  8,  1;
  0, 0, 1, 20, 28, 10,  1;
  0, 0, 0, 15, 56, 45, 12, 1;
		

Crossrefs

Row sums are A002478. Diagonal sums are A094686. Inverse is (-1)^(n-k) * A109971(n,k). Unsigned version of A109970.

Programs

  • GAP
    Flat(List([0..10], n->List([0..n], k-> Binomial(2*k, n-k) ))); # G. C. Greubel, May 09 2019
  • Magma
    [[Binomial(2*k, n-k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 09 2019
    
  • Mathematica
    Flatten[Table[Binomial[2k,n-k],{n,0,20},{k,0,n}]] (* Harvey P. Dale, Oct 22 2012 *)
  • PARI
    {T(n,k) = binomial(2*k, n-k)}; \\ G. C. Greubel, May 09 2019
    
  • Sage
    [[binomial(2*k, n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 09 2019
    

Formula

G.f.: 1/(1-x*y*(1+x)^2).
Number triangle T(n,k) = C(2*k, n-k) = C(n,k)*C(3*k,n)/C(3*k,k).
Showing 1-3 of 3 results.