cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002478 Bisection of A000930.

Original entry on oeis.org

1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181
Offset: 0

Views

Author

Keywords

Comments

Number of ways to tile a 3 X n region with 1 X 1, 2 X 2 and 3 X 3 tiles.
Number of ternary words with subwords (0,0), (0,1) and (1,1) not allowed. - Olivier Gérard, Aug 28 2012
Diagonal sums of A063967. - Paul Barry, Nov 09 2005
Row sums of number triangle A116088. - Paul Barry, Feb 04 2006
Sequence is identical to its second differences negated, minus the first 3 terms. - Paul Curtz, Feb 10 2008
a(n) = term (3,3) in the 3 X 3 matrix [0,1,0; 0,0,1; 1,2,1]^n. - Gary W. Adamson, May 30 2008
a(n)/a(n-1) tends to 2.147899035..., an eigenvalue of the matrix and a root to x^3 - x^2 - 2x - 1 = 0. - Gary W. Adamson, May 30 2008
INVERT transform of (1, 2, 1, 0, 0, 0, ...) = (1, 3, 6, 13, 28, ...); such that (1, 2, 1, 0, 0, 0, ...) convolved with (1, 1, 3, 6, 13, 28, 0, 0, 0, ...) shifts to the left. - Gary W. Adamson, Apr 18 2010
a(n) is the top left entry in the n-th power of the 3 X 3 matrix [1, 1, 1; 1, 0, 1; 1, 0, 0] or of the 3 X 3 matrix [1, 1, 1; 1, 0, 0; 1, 1, 0]. - R. J. Mathar, Feb 03 2014

Examples

			a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
  • S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000930, A054856, A054857, A025234, A078007, A078039, A226546, A077936 (INVERT transform), A008346 (inverse INVERT transform).

Programs

  • Magma
    I:=[1,1,3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
    
  • Mathematica
    f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1,1,3}, n-2]; NumOfTilings[30]
    LinearRecurrence[{1,2,1},{1,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
    CoefficientList[Series[1/(1-x-2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
  • PARI
    a(n)=([0,1,0; 0,0,1; 1,2,1]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
    
  • SageMath
    @CachedFunction
    def a(n): # A002478
        if (n<3): return (1,1,3)[n]
        else: return sum(binomial(2,j)*a(n-j) for j in range(1,4))
    [a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023

Formula

G.f.: 1 / (1-x-2*x^2-x^3). [Simon Plouffe in his 1992 dissertation.]
a(n) = a(n-1) + 2*a(n-2) + a(n-3).
a(n) = Sum_{k=0..n} binomial(2*n-2*k, k). - Paul Barry, Nov 13 2004
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} C(j, n-k-j)*C(j, k). - Paul Barry, Nov 09 2005
a(n) = Sum_{k=0..n} C(2*k,n-k) = Sum_{k=0..n} C(n,k)*C(3*k,n)/C(3*k,k). - Paul Barry, Feb 04 2006
a(n) = A000930(n) + 2*Sum_{i=0..n-2} a(i)*A000930(n-2-i). - Michael Tulskikh, Jun 07 2020

Extensions

Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000

A094686 A Fibonacci convolution.

Original entry on oeis.org

1, 0, 1, 2, 2, 4, 7, 10, 17, 28, 44, 72, 117, 188, 305, 494, 798, 1292, 2091, 3382, 5473, 8856, 14328, 23184, 37513, 60696, 98209, 158906, 257114, 416020, 673135, 1089154, 1762289, 2851444, 4613732, 7465176, 12078909, 19544084, 31622993, 51167078, 82790070
Offset: 0

Views

Author

Paul Barry, May 19 2004

Keywords

Comments

Convolution of A000045 and A049347.
Diagonal sums of number triangle A116088. - Paul Barry, Feb 04 2006
Let (b(n)) be the p-INVERT of (1,1,0,0,0,0,0,0,...) using p(S) = 1 - S^2; then b(n) = a(n+1) for n >=0. See A292324. - Clark Kimberling, Sep 15 2017

Crossrefs

Programs

  • Magma
    [(Fibonacci(n+1) +((n+2) mod 3) -1)/2: n in [0..40]]; // G. C. Greubel, Feb 09 2023
    
  • Mathematica
    LinearRecurrence[{0,1,2,1}, {1,0,1,2}, 40] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    Vec(1/((1-x-x^2)*(1+x+x^2)) + O(x^50)) \\ Michel Marcus, Sep 27 2014
    
  • SageMath
    [(fibonacci(n+1) + (n+2)%3 - 1)/2 for n in range(41)] # G. C. Greubel, Feb 09 2023

Formula

G.f.: 1/((1-x-x^2)*(1+x+x^2)).
a(n) = 2*sqrt(3)*Sum_{k=0..n} Fibonacci(k+1)*cos((4*(n-k)+1)*Pi/6)/3.
a(n) = a(n-2) + 2*a(n-3) + a(n-4).
From Paul Barry, Jan 13 2005: (Start)
a(n) = A005252(n) - (-cos((2*n+1)*Pi/3)/2 - sqrt(3)*sin((2*n+1)*Pi/3)/6 + sqrt(3)*cos(Pi*n/3+Pi/6)/6 + sin((2*n+1)*Pi/6)/2).
a(n) = Sum_{k=0..floor(n/2)} if(mod(n-k, 2)=0, binomial(n-k, k), 0).
a(n) = A093040(n-1) - Fibonacci(n). (End)
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*(1+(-1)^(n-k))/2. - Paul Barry, Sep 09 2005
From Paul Barry, Feb 04 2006: (Start)
a(n) = Sum_{k=0..floor(n/2)} C(2*k, n-2*k).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)*C(3*k,n-k)/C(3*k,k). (End)
2*a(n) = A000045(n+1) + A049347(n). - R. J. Mathar, Feb 13 2020
a(n) = (1/2)*(A000045(n+1) + A049347(n)). - G. C. Greubel, Feb 09 2023

A179330 E.g.f. satisfies: A(x) = (1+x)/(1+3*x) * A(x*(1+x)^2).

Original entry on oeis.org

0, 2, -6, 42, -468, 7080, -133128, 2938824, -73169568, 1997384832, -58814501760, 1868053207680, -65311214042880, 2585560450337280, -115344597684718080, 5424254194395456000, -244310147229735014400, 10256126830544041574400
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2010

Keywords

Examples

			E.g.f.: A(x) = 2*x - 6*x^2/2! + 42*x^3/3! - 468*x^4/4! + 7080*x^5/5! - 133128*x^6/6! + 2938824*x^7/7! - 73169568*x^8/8! + 1997384832*x^9/9! - 58814501760*x^10/10! + 1868053207680*x^11/11! - 65311214042880*x^12/12! +...
...
A(x*(1+x)^2) = 2*x + 2*x^2/2! - 18*x^3/3! + 108*x^4/4! - 480*x^5/5! - 2808*x^6/6! + 162792*x^7/7! - 3940128*x^8/8! + 57267648*x^9/9! + 534366720*x^10/10! - 78703384320*x^11/11! + 2883142045440*x^12/12! +...
...
where A(x*(1+x)^2) = (1+3*x)/(1+x) * A(x).
...
Related expansions begin:
. A = 2*x - 6*x^2/2! + 42*x^3/3! - 468*x^4/4! + 7080*x^5/5! +...
. A*Dx(A)/2! = 8*x^2/2! - 90*x^3/3! + 1332*x^4/4! - 25200*x^5/5! +...
. A*Dx(A*Dx(A))/3! = 48*x^3/3! - 1248*x^4/4! + 32760*x^5/5! -+...
. A*Dx(A*Dx(A*Dx(A)))/4! = 384*x^4/4! - 18480*x^5/5! + 770400*x^6/6! -+...
. A*Dx(A*Dx(A*Dx(A*Dx(A))))/5! = 3840*x^5/5! - 300672*x^6/6! +-...
...
Sums of which generate the square of the g.f. of A001764:
. G001764(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+...
. G001764(-x)^2 = 1 - 2*x + 7*x^2 - 30*x^3 + 143*x^4 - 728*x^5 +...+ A006013(n)*(-x)^n +...
...
The Riordan array ((1+x)^2, x*(1+x)^2) (cf. A116088) begins:
1;
2, 1;
1, 4, 1;
0, 6, 6, 1;
0, 4, 15, 8, 1;
0, 1, 20, 28, 10, 1;
0, 0, 15, 56, 45, 12, 1; ...
The matrix log of Riordan array ((1+x)^2, x*(1+x)^2) begins:
0;
2, 0;
-6/2!, 4, 0;
42/3!, -12/2!, 6, 0;
-468/4!, 84/3!, -18/2!, 8, 0;
7080/5!, -936/4!, 126/3!, -24/2!, 10, 0;
-133128/6!, 14160/5!, -1404/4!, 168/3!, -30/2!, 12, 0; ...
where the g.f. of the leftmost column equals the e.g.f. of this sequence.
		

Crossrefs

Cf. A179331, variants: A179320, A179420.

Programs

  • PARI
    /* E.g.f. satisfies: A(x) = (1+x)/(1+3*x)*A(x*(1+x)^2): */
    {a(n)=local(A=2*x, B); for(m=2, n, B=(1+x)/(1+3*x+O(x^(n+3)))*subst(A,x,x*(1+x)^2+O(x^(n+3))); A=A-polcoeff(B, m+1)*x^m/(m-1)/2); n!*polcoeff(A, n)}
    
  • PARI
    /* (1+x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! +...: */
    {a(n)=local(A=0+sum(m=1,n-1,a(m)*x^m/m!),D=1,R=0);R=-((1+x)^2+x*O(x^n))+1+sum(m=1,n,(D=A*deriv(x*D+x*O(x^n)))/m!);-n!*polcoeff(R,n)}
    
  • PARI
    /* First column of the matrix log of triangle A116088: */
    {a(n)=local(M=matrix(n+1, n+1, r, c, if(r>=c, polcoeff(((1+x)^2+x*O(x^n))^c,r-c))), LOG, ID=M^0); LOG=sum(m=1, n+1, -(ID-M)^m/m); n!*LOG[n+1, 1]}

Formula

E.g.f. A=A(x) satisfies:
. (1+x)^2 = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +...
. (1+x)^2*(1+x*(1+x)^2)^2 = 1 + 2*A + 2^2*A*Dx(A)/2! + 2^3*A*Dx(A*Dx(A))/3! + 2^4*A*Dx(A*Dx(A*Dx(A)))/4! +...
. G001764(-x)^2 = 1 - A + A*Dx(A)/2! - A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! -+...; G001764(x) = g.f. of A001764;
where Dx(F) = d/dx(x*F).
INVERSION FORMULA:
More generally, if A(x) = A(G(x)) * G(x)/(x*G'(x)) with G(0)=0, G'(0)=1,
then G(x) can be obtained from A=A(x) by the series:
. G(x)/x = 1 + A + A*Dx(A)/2! + A*Dx(A*Dx(A))/3! + A*Dx(A*Dx(A*Dx(A)))/4! +... where Dx(F) = d/dx(x*F).
ITERATION FORMULA:
Let G_n(x) denote the n-th iteration of G(x) = x*(1+x)^2, and A=A(x), then:
. A(x) = A(G_n(x)) * G_n(x)/(x*G_n'(x)) for all n;
. G_n(x)/x = 1 + n*A + n^2*A*Dx(A)/2! + n^3*A*Dx(A*Dx(A))/3! + n^4*A*Dx(A*Dx(A*Dx(A)))/4! +... where Dx(F) = d/dx(x*F).
...
MATRIX LOG OF RIORDAN ARRAY (G(x)/x, G(x)) where G(x) = x*(1+x)^2:
. k*A(x) = e.g.f. of column k of the matrix log of triangle A116088 for k>=0.
Showing 1-3 of 3 results.