cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A115730 a(n) = a(n-3) + A001654(n-1) with a(0)=0, a(1)=0 and a(2)=1.

Original entry on oeis.org

0, 0, 1, 2, 6, 16, 42, 110, 289, 756, 1980, 5184, 13572, 35532, 93025, 243542, 637602, 1669264, 4370190, 11441306, 29953729, 78419880, 205305912, 537497856, 1407187656, 3684065112, 9645007681, 25250957930, 66107866110
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

The a(n+1) represent the Ca2 and Ze4 sums of the Golden Triangle A180662. Furthermore the a(3*n) represent the Ze1 (terms doubled) and Ca3 sums of the Golden triangle. See A180662 for more information about these and other triangle sums.

Examples

			G.f. = x^2 + 2*x^3 + 6*x^4 + 16*x^5 + 42*x^6 + 110*x^7 + 289*x^8 + ... - _Michael Somos_, Sep 05 2023
		

Crossrefs

Programs

  • Magma
    function A115730(n)
      if n lt 3 then return Floor(n/2);
      else return A115730(n-3) + Fibonacci(n-1)*Fibonacci(n);
      end if; return A115730;
    end function;
    [A115730(n): n in [0..40]]; // G. C. Greubel, Jan 20 2022
    
  • Maple
    nmax:=31: with(combinat): for n from 0 to nmax do A001654(n):=fibonacci(n) * fibonacci(n+1) od: a(0):=0: a(1):=0: a(2):=1: for n from 3 to nmax do a(n):=a(n-3) + A001654(n-1) od: seq(a(n),n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,2,0,-2,-2,1}, {0,0,1,2,6,16}, 40] (* modified by G. C. Greubel, Jan 20 2022 *)
    a[ n_] := Floor[(2*Fibonacci[2*n+1] + Fibonacci[2*n+2] + 2)/20]; (* Michael Somos, Sep 05 2023 *)
  • PARI
    {a(n) = (2*fibonacci(2*n+1) + fibonacci(2*n+2) + 2)\20}; /* Michael Somos, Sep 05 2023 */
  • Sage
    U=chebyshev_U
    def A115730(n): return (1/60)*((-1)^n*(6 - 5*U(n, 1/2) + 10*U(n-1, 1/2)) - (10 - 9*U(n, 3/2) + 6*U(n-1, 3/2)))
    [A115730(n) for n in (0..40)] # G. C. Greubel, Jan 20 2022
    

Formula

a(n) = -floor(g(Fibonacci(n+1))) where g(x) = (1-x^2)^2/(-4*x^2).
G.f.: x^2/( (1-x)*(1+x)*(1+x+x^2)*(1-3*x+x^2) ). - R. J. Mathar, Jun 20 2015
a(n) - a(n-2) = A182890(n-1). - R. J. Mathar, Jun 20 2015
a(n) = (1/60)*((-1)^n*(6 - 5*ChebyshevU(n, 1/2) + 10*ChebyshevU(n-1, 1/2)) - (10 - 9*ChebyshevU(n, 3/2) + 6*ChebyshevU(n-1, 3/2))). - G. C. Greubel, Jan 20 2022
a(n) = floor((2*Fibonacci(2*n+1) + Fibonacci(2*n+2) + 2)/20). - Michael Somos, Sep 05 2023

Extensions

Corrected and information added by Johannes W. Meijer, Sep 22 2010
Edited by Editors-in-Chief. - N. J. A. Sloane, Jun 20 2015

A004697 a(n) = floor(Fibonacci(n)/4).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 3, 5, 8, 13, 22, 36, 58, 94, 152, 246, 399, 646, 1045, 1691, 2736, 4427, 7164, 11592, 18756, 30348, 49104, 79452, 128557, 208010, 336567, 544577, 881144, 1425721, 2306866, 3732588, 6039454
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A079962. - Mircea Merca, Jan 04 2011

Crossrefs

See A000045 for the Fibonacci numbers.
Cf. A079962.

Programs

  • Magma
    [Floor(Fibonacci(n)/4): n in [0..40]]; // Vincenzo Librandi, Jul 09 2012
    
  • Maple
    A004697 := proc(n) floor(combinat[fibonacci](n)/4) ; end proc:
  • Mathematica
    CoefficientList[Series[x^5/((1-x)*(1-x-x^2)*(1+x^2+x^4)),{x,0,50}],x] (* Vincenzo Librandi, Jul 09 2012 *)
    Floor[Fibonacci[Range[0,50]]/4] (* or *) LinearRecurrence[ {2,-1,1,-1,1,0,-1},{0,0,0,0,0,1,2},50] (* Harvey P. Dale, Dec 05 2012 *)
  • PARI
    vector(50, n, n--; fibonacci(n)\4) \\ G. C. Greubel, Oct 09 2018

Formula

G.f.: x^5 / ((1-x)*(1-x-x^2)*(1+x^2+x^4)).
From Mircea Merca, Jan 04 2011: (Start)
a(n) = floor(Fibonacci(n)/4).
a(n) = ceiling(Fibonacci(n)/4-3/4).
a(n) = round(Fibonacci(n)/4-3/8).
a(n) = Sum_{k=1..n-2} round(Fibonacci(n)/4).
a(n) = a(n-6) + Fibonacci(n-3), n > 5. (End)
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) - a(n-7). - R. J. Mathar, Jan 08 2011
a(n) = (A000045(n) - A079343(n))/4. - R. J. Mathar, Jul 14 2012

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A118923 Triangle T(n,k) built by placing T(n,0)=A000012(n) in the left edge, T(n,n)=A079978(n) on the right edge and filling the body with the Pascal recurrence T(n,k) = T(n-1,k) + T(n-1,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 1, 1, 3, 3, 2, 0, 1, 4, 6, 5, 2, 0, 1, 5, 10, 11, 7, 2, 1, 1, 6, 15, 21, 18, 9, 3, 0, 1, 7, 21, 36, 39, 27, 12, 3, 0, 1, 8, 28, 57, 75, 66, 39, 15, 3, 1, 1, 9, 36, 85, 132, 141, 105, 54, 18, 4, 0, 1, 10, 45, 121, 217, 273, 246, 159, 72, 22, 4, 0, 1, 11, 55, 166
Offset: 0

Views

Author

Alford Arnold, May 05 2006

Keywords

Comments

The fourth diagonal is 1, 2, 5, 11, 21, ..., which is 1 + A000292. The fifth diagonal is 0, 2, 7, 18, 39, 75, 132, 217, 338, 504, 725, 1012, ..., which is A051743.
The array A007318 is generated by placing A000012 on both edges with the same Pascal-like recurrence, and the array A059259 uses edges defined by A000012 and A059841. - R. J. Mathar, Jan 21 2008
From Michael A. Allen, Nov 30 2021: (Start)
T(n,n-k) is the (n,k)-th entry of the (1/(1-x^3), x/(1-x)) Riordan array.
Sums of rows give A077947.
Sums of antidiagonals give A079962. (End)

Examples

			The table begins
  1
  1  0
  1  1  0
  1  2  1  1
  1  3  3  2  0
  1  4  6  5  2  0
  1  5 10 11  7  2  1
  1  6 15 21 18  9  3  0
		

Crossrefs

Programs

  • Maple
    A000012 := proc(n) 1 ; end: A079978 := proc(n) if n mod 3 = 0 then 1; else 0 ; fi ; end: A118923 := proc(n,k) if k = 0 then A000012(n); elif k = n then A079978(n) ; else A118923(n-1,k)+A118923(n-1,k-1) ; fi ; end: for n from 0 to 15 do for k from 0 to n do printf("%d, ",A118923(n,k)) ; od: od: # R. J. Mathar, Jan 21 2008
  • Mathematica
    Flatten@Table[CoefficientList[Series[1/((1 + x*y + x^2*y^2)(1 - x - x*y)), {x, 0, 23}, {y, 0, 11}], {x, y}][[n + 1, k + 1]], {n, 0, 11}, {k, 0, n}] (* Michael A. Allen, Nov 30 2021 *)

Formula

From Michael A. Allen, Nov 30 2021: (Start)
For 0 <= k < n, T(n,k) = (n-k)*Sum_{j=0..floor(k/3)} binomial(n-3*j,n-k)/(n-3*j).
G.f.: 1/((1+x*y+(x*y)^2)*(1-x-x*y)). (End)

Extensions

Edited and extended by R. J. Mathar, Jan 21 2008
Offset changed by Michael A. Allen, Nov 30 2021

A349840 The number of compositions of n using elements from the set {1,3,5,7,8}.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 22, 35, 56, 91, 147, 238, 385, 623, 1009, 1632, 2640, 4272, 6912, 11184, 18096, 29280, 47377, 76657, 124033, 200690, 324723, 525413, 850136, 1375549, 2225686, 3601235, 5826920, 9428155
Offset: 0

Views

Author

Michael A. Allen, Dec 05 2021

Keywords

Comments

Number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using squares, trominoes, pentominoes, heptominoes, and octominoes.
Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-1,0,2,4,6,7} for all i=1,...,n.
a(n) gives the sums of the antidiagonals of A349839.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

Sums of antidiagonals of triangles in the same family as A349839: A000045, A006498, A079962, A349843.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^3-x^5-x^7-x^8),{x,0,35}],x]

Formula

a(n) = a(n-1) + a(n-3) + a(n-5) + a(n-7) + a(n-8) + delta(n,0), a(n<0)=0 (where delta(i,j) is the Kronecker delta).
a(n) = a(n-1) + a(n-2) + a(n-8) - a(n-9) - a(n-10) + delta(n,0) - delta(n,2), a(n<0)=0.
G.f.: 1/(1-x-x^3-x^5-x^7-x^8).

A349843 Expansion of (1 - x^2)/((1 - x^10)*(1 - x - x^2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 56, 90, 145, 235, 380, 615, 995, 1610, 2605, 4215, 6821, 11036, 17856, 28892, 46748, 75640, 122388, 198028, 320416, 518444, 838861, 1357305, 2196165, 3553470, 5749635, 9303105
Offset: 0

Views

Author

Michael A. Allen, Dec 13 2021

Keywords

Comments

The number of compositions of n using elements from the set {1,3,5,7,9,10}.
Number of ways to tile an n-board (an n X 1 array of 1 X 1 cells) using squares, trominoes, pentominoes, heptominoes, nonominoes, and decominoes.
Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-1,0,2,4,6,8,9} for all i=1,...,n.
a(n) gives the sums of the antidiagonals of A349841.

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

Sums of antidiagonals of triangles in the same family as A349841: A000045, A006498, A079962, A349840.

Programs

  • Mathematica
    CoefficientList[Series[1/(1-x-x^3-x^5-x^7-x^9-x^10), {x, 0, 35}], x]

Formula

a(n) = a(n-1) + a(n-3) + a(n-5) + a(n-7) + a(n-9) + a(n-10) + delta(n,0), a(n<0)=0.
a(n) = a(n-1) + a(n-2) + a(n-10) - a(n-11) - a(n-12) + delta(n,0) - delta(n,2), a(n<0)=0.
G.f.: 1/(1-x-x^3-x^5-x^7-x^9-x^10).

A115605 Expansion of -x^2*(2 + x - 2*x^2 - x^3 + 2*x^4) / ( (x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)*(x^2 + 4*x - 1)*(x^2 - x - 1) ).

Original entry on oeis.org

0, 0, 2, 7, 31, 128, 549, 2315, 9826, 41594, 176242, 746496, 3162334, 13395658, 56745250, 240376201, 1018250793, 4313378176, 18271765435, 77400436781, 327873517634, 1388894499108, 5883451527348, 24922700587008
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Crossrefs

Programs

  • Maple
    A000035 := proc(n)
            n mod 2 ;
    end proc:
    A061347 := proc(n)
            op((n mod 3)+1,[-2,1,1]) ;
    end proc:
    A001076 := proc(n)
            option remember;
            if n <=1 then
                    n;
            else
                    4*procname(n-1)+procname(n-2) ;
            end if;
    end proc:
    A039834 := proc(n)
            (-1)^(n+1)*combinat[fibonacci](n) ;
    end proc:
    A087204 := proc(n)
            op((n mod 6)+1,[2,1,-1,-2,-1,1]) ;
    end proc:
    A115605 := proc(n)
            -A000035(n+1)/6 +A061347(n+2)/12 + A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12 ;
    end proc: # R. J. Mathar, Dec 16 2011
  • Mathematica
    LinearRecurrence[{3,6,-3,-1,0,1,-3,-6,3,1},{0,0,2,7,31,128,549,2315,9826,41594},30] (* Harvey P. Dale, Dec 16 2011 *)
  • PARI
    concat([0,0],Vec((2+x-2*x^2-x^3+2*x^4)/((1-x)*(1+x)*(1+x+x^2)*(x^2-x+1)*(x^2+4*x-1)*(x^2-x-1))+O(x^99))) \\ Charles R Greathouse IV, Sep 27 2012

Formula

Lim_{n->infinity} a(n+1)/a(n) = phi^3 = A098317.
a(n) = -A000035(n+1)/6 +A061347(n+2)/12 +A001076(n+1)/10 +3*A039834(n+1)/20 -A087204(n)/12. - R. J. Mathar, Dec 16 2011

A115852 Dihedral D3 elliptical invariant transform on A000045: a[n+1]/a[n]= Phi^4=((1+Sqrt[5])/2)^4.

Original entry on oeis.org

0, 0, 4, 20, 156, 1024, 7140, 48620, 334084, 2287656, 15685560, 107495424, 736823880, 5050163160, 34614602500, 237251310140, 1626146516820, 11145769206784, 76394251284780, 523613954825156, 3588903524021764
Offset: 0

Views

Author

Roger L. Bagula, Mar 13 2006

Keywords

Comments

A D4 elliptical invariant transform gives a ratio of Phi^4. Ratios from the Dihedral transforms are: D1->Phi D2->1+Phi=Phi^2 D3->Phi^3 D4->Phi^4

Crossrefs

Programs

  • Mathematica
    F[0] = 0; F[1] = 1; F[n_] := F[n] = F[n - 1] + F[n - 2] g[x_] = (x^4 - 1)^2/(-4*x^4) a = Table[ -Floor[g[F[n]]], {n, 1, 25}] Table[N[a[[n + 1]]/a[[n]]], {n, 1, Length[a] - 1}]

Formula

b[n]=A000045[n] g[x]=(x^4-1)^2/(-4*x^4): D4 dihedral elliptical invariant function a(n) = -Floor[g[b[n]]

A227047 Expansion of x^2*(1+x^2) / ( (x^2-x+1)*(-x^2-x+1)*(1+x+x^2) ).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 7, 12, 19, 31, 50, 80, 130, 211, 341, 552, 893, 1444, 2337, 3782, 6119, 9901, 16020, 25920, 41940, 67861, 109801, 177662, 287463, 465124, 752587, 1217712, 1970299, 3188011, 5158310, 8346320, 13504630, 21850951, 35355581, 57206532, 92562113, 149768644
Offset: 0

Views

Author

Paul Curtz, Jun 29 2013

Keywords

Programs

  • Mathematica
    CoefficientList[Series[x^2(1+x^2)/((x^2-x+1)(-x^2-x+1)(1+x+x^2)),{x,0,50}],x] (* or *) LinearRecurrence[{1,0,1,0,1,1},{0,0,1,1,2,3},50] (* Harvey P. Dale, Oct 16 2018 *)

Formula

a(0)=a(1)=0. a(n+2)=a(n+1)+a(n) + A134667(n+1).
a(2n+1) = A182895(n). a(2n+2) = A182895(n+1)-A182895(n).
a(n+1)/a(n) tends to A001622 (the golden ratio) as n->infinity.
a(n) = A079962(n-2) + A079962(n-4). - R. J. Mathar, Jun 30 2013
a(n+6) - a(n-6) = 10*A000045(n).
a(n+3) - a(n-3) = A000032(n).
a(n) = a(n-1) +a(n-3) +a(n-5) +a(n-6). - Joerg Arndt, Jun 30 2013
Showing 1-10 of 10 results.