cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094687 Convolution of Fibonacci and Jacobsthal numbers.

Original entry on oeis.org

0, 0, 1, 2, 6, 13, 30, 64, 137, 286, 594, 1221, 2498, 5084, 10313, 20858, 42094, 84797, 170582, 342760, 688105, 1380390, 2767546, 5546037, 11109786, 22248228, 44542825, 89160674, 178442742, 357081901, 714481614, 1429477456, 2859786953
Offset: 0

Views

Author

Paul Barry, May 19 2004

Keywords

Comments

Also convolution of A008346(n-1) and A000079(n).
Also difference of Fibonacci and Jacobsthal numbers shifted left: a(n) = A000045(n+1) - A001045(n+1). - David Callan, Jul 22 2008

Examples

			a(2) =   0 + 2*0  +  1 =   1
a(3) =   1 + 2*0  +  1 =   2
a(4) =   2 + 2*1  +  2 =   6
a(5) =   6 + 2*2  +  3 =  13
a(6) =  13 + 2*6  +  5 =  30
a(7) =  30 + 2*13 +  8 =  64
a(8) =  64 + 2*30 + 13 = 137
a(9) = 137 + 2*64 + 21 = 286
... - _Philippe Deléham_, Mar 06 2013
		

Crossrefs

Programs

  • GAP
    a:=[0,0,1,2];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2] - 3*a[n-3]-2*a[n-4]; od; a; # G. C. Greubel, Mar 06 2019
  • Magma
    I:=[0,0,1,2]; [n le 4 select I[n] else 2*Self(n-1) + 2*Self(n-2) -3*Self(n-3) -2*Self(n-4): n in [1..40]]; // G. C. Greubel, Mar 06 2019
    
  • Maple
    with(combstruct):
    TSU := [T, { T = Sequence(S, card > 1), S = Sequence(U, card > 0), U = Sequence(Z, card > 1)}, unlabeled]:
    seq(count(TSU, size = j+2), j=0..32); # Peter Luschny, Jan 04 2020
  • Mathematica
    LinearRecurrence[{2,2,-3,-2}, {0,0,1,2}, 40] (* G. C. Greubel, Mar 06 2019 *)
  • PARI
    my(x='x+O('x^40)); concat([0,0], Vec(x^2/((1-x-x^2)*(1-x-2*x^2)))) \\ G. C. Greubel, Mar 06 2019
    
  • Sage
    (x^2/((1-x-x^2)*(1-x-2*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Mar 06 2019
    

Formula

G.f.: x^2/((1-x-x^2)*(1-x-2*x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - 2*a(n-4).
a(n) = Sum_{k=0..n} A000045(k)*A001045(n-k).
a(n+1) = a(n) + 2*a(n-1) + A000045(n). - Philippe Deléham, Mar 06 2013
a(n) = J(n+1) - F(n+1) = Sum_{k=0..n} F(k)*J(n-k), where J=A001045, F=A000045. - Yuchun Ji, Mar 05 2019
E.g.f.: exp(x/2)*(5*(3*cosh(3*x/2) - 3*cosh(sqrt(5)*x/2) + sinh(3*x/2)) - 3*sqrt(5)*sinh(sqrt(5)*x/2))/15. - Stefano Spezia, Aug 28 2025