A094687 Convolution of Fibonacci and Jacobsthal numbers.
0, 0, 1, 2, 6, 13, 30, 64, 137, 286, 594, 1221, 2498, 5084, 10313, 20858, 42094, 84797, 170582, 342760, 688105, 1380390, 2767546, 5546037, 11109786, 22248228, 44542825, 89160674, 178442742, 357081901, 714481614, 1429477456, 2859786953
Offset: 0
Examples
a(2) = 0 + 2*0 + 1 = 1 a(3) = 1 + 2*0 + 1 = 2 a(4) = 2 + 2*1 + 2 = 6 a(5) = 6 + 2*2 + 3 = 13 a(6) = 13 + 2*6 + 5 = 30 a(7) = 30 + 2*13 + 8 = 64 a(8) = 64 + 2*30 + 13 = 137 a(9) = 137 + 2*64 + 21 = 286 ... - _Philippe Deléham_, Mar 06 2013
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 28.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-3,-2).
Programs
-
GAP
a:=[0,0,1,2];; for n in [5..40] do a[n]:=2*a[n-1]+2*a[n-2] - 3*a[n-3]-2*a[n-4]; od; a; # G. C. Greubel, Mar 06 2019
-
Magma
I:=[0,0,1,2]; [n le 4 select I[n] else 2*Self(n-1) + 2*Self(n-2) -3*Self(n-3) -2*Self(n-4): n in [1..40]]; // G. C. Greubel, Mar 06 2019
-
Maple
with(combstruct): TSU := [T, { T = Sequence(S, card > 1), S = Sequence(U, card > 0), U = Sequence(Z, card > 1)}, unlabeled]: seq(count(TSU, size = j+2), j=0..32); # Peter Luschny, Jan 04 2020
-
Mathematica
LinearRecurrence[{2,2,-3,-2}, {0,0,1,2}, 40] (* G. C. Greubel, Mar 06 2019 *)
-
PARI
my(x='x+O('x^40)); concat([0,0], Vec(x^2/((1-x-x^2)*(1-x-2*x^2)))) \\ G. C. Greubel, Mar 06 2019
-
Sage
(x^2/((1-x-x^2)*(1-x-2*x^2))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Mar 06 2019
Formula
G.f.: x^2/((1-x-x^2)*(1-x-2*x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - 3*a(n-3) - 2*a(n-4).
a(n+1) = a(n) + 2*a(n-1) + A000045(n). - Philippe Deléham, Mar 06 2013
a(n) = J(n+1) - F(n+1) = Sum_{k=0..n} F(k)*J(n-k), where J=A001045, F=A000045. - Yuchun Ji, Mar 05 2019
E.g.f.: exp(x/2)*(5*(3*cosh(3*x/2) - 3*cosh(sqrt(5)*x/2) + sinh(3*x/2)) - 3*sqrt(5)*sinh(sqrt(5)*x/2))/15. - Stefano Spezia, Aug 28 2025
Comments