cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094688 Convolution of Fibonacci(n) and 3^n.

Original entry on oeis.org

0, 1, 4, 14, 45, 140, 428, 1297, 3912, 11770, 35365, 106184, 318696, 956321, 2869340, 8608630, 25826877, 77482228, 232449268, 697351985, 2092062720, 6276199106, 18828615029, 56485873744, 169457667600, 508373077825, 1525119354868
Offset: 0

Views

Author

Paul Barry, May 19 2004

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1,4]; [n le 3 select I[n] else 4*Self(n-1)-2*Self(n-2) -3*Self(n-3): n in [1..41]]; // Vincenzo Librandi, Jun 24 2012
    
  • Mathematica
    LinearRecurrence[{4,-2,-3},{0,1,4},40] (* Vincenzo Librandi, Jun 24 2012 *)
    Table[(3^(n+1) -LucasL[n+2])/5, {n,0,40}] (* Vladimir Reshetnikov, Sep 27 2016 *)
  • PARI
    a(n)=(3^(n+1)-fibonacci(n+1)-fibonacci(n+3))/5 \\ Charles R Greathouse IV, Jun 28 2011
    
  • SageMath
    [(3^(n+1) -lucas_number2(n+2,1,-1))/5 for n in range(41)] # G. C. Greubel, Feb 09 2023

Formula

G.f.: x/((1-3*x)*(1-x-x^2)).
a(n) = (1/5)*(3^(n+1) - Lucas(n+2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 3*a(n-3).
a(n) = A101220(3, 3, n). - Ross La Haye, Jan 28 2005
a(n) = a(n-1) + a(n-2) + 3^(n-1) for n > 1, with a(0) = 0, a(1) = 1. - Ross La Haye, Aug 20 2005
a(n) = 3*a(n-1) + Fibonacci(n), where a(0) = 0. - Taras Goy, Mar 24 2019