cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094691 Decimal expansion of -Integral_{x=0..1} (sqrt(x)/log(1-x)) dx.

Original entry on oeis.org

1, 6, 0, 1, 4, 0, 2, 2, 4, 3, 5, 4, 9, 8, 8, 7, 6, 1, 3, 9, 3, 3, 2, 4, 9, 8, 9, 2, 3, 7, 1, 2, 8, 6, 0, 5, 6, 6, 7, 2, 4, 1, 0, 8, 9, 9, 3, 1, 4, 1, 6, 5, 4, 5, 3, 2, 7, 3, 1, 1, 4, 8, 7, 1, 0, 4, 5, 7, 3, 8, 5, 5, 4, 8, 3, 8, 7, 5, 0, 4, 5, 8, 8, 3, 7, 9, 3, 0, 6, 8
Offset: 1

Views

Author

Robert G. Wilson v, May 19 2004

Keywords

Examples

			1.601402243549887613933249892371286056672410899314165453273114871045738554838...
		

Programs

  • Mathematica
    -NIntegrate[ Sqrt[x]/Log[1 - x], {x, 0, 1}, MaxRecursion -> 24, WorkingPrecision -> 98]
    RealDigits[NIntegrate[Sqrt[x]/Log[1-x],{x,0,1},WorkingPrecision-> 120],10,120] [[1]] (* Harvey P. Dale, Apr 05 2019 *)
  • PARI
    -intnum(x=0, 1, sqrt(x)/log(1-x)) \\ Michel Marcus, Sep 23 2020

Formula

Equals 5/3 - 2*Sum_{k>=1} abs(Sum_{j=1..k+1} (BernoulliB(j)*Stirling1(k, j-1))/j)/((2*k+3)*k!). - Jean-François Alcover, Apr 12 2013
Equals Integral_{x=0..1} beta(x+1,1/2) dx. - Jean-Luc Marichal, Sep 22 2020

Extensions

Corrected and extended by Harvey P. Dale, Apr 05 2019