cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jean-Luc Marichal

Jean-Luc Marichal's wiki page.

Jean-Luc Marichal has authored 9 sequences.

A292934 E.g.f.: x^2/(x+3-2*exp(x)).

Original entry on oeis.org

0, 0, 2, 6, 48, 400, 4140, 49644, 681296, 10515600, 180349380, 3402380740, 70023004920, 1561206957336, 37485640585484, 964345394431020, 26462386594676640, 771532717446066208, 23817889096309943892, 776127882633846005268
Offset: 0

Author

Jean-Luc Marichal, Sep 27 2017

Keywords

Comments

Number of associative and quasitrivial binary operations on {1,...,n} that have both neutral and annihilator elements.

Crossrefs

Formula

a(n) = n*(n-1)*A292932(n-2).
a(n) ~ n! / ((r-1) * (r-3)^(n-1)), where r = -LambertW(-1, -2*exp(-3)) = 3.5830738760366909976807989989303134394318270218566... - Vaclav Kotesovec, Sep 27 2017

A292933 E.g.f.: x/(x+3-2*exp(x)).

Original entry on oeis.org

0, 1, 2, 12, 80, 690, 7092, 85162, 1168400, 18034938, 309307340, 5835250410, 120092842872, 2677545756106, 64289692962068, 1653899162167290, 45384277496827424, 1323216060906107994, 40848835928097158172, 1331096992220322502858
Offset: 0

Author

Jean-Luc Marichal, Sep 27 2017

Keywords

Comments

Number of associative and quasitrivial binary operations on {1,...,n} that have neutral elements. Also: Number of associative and quasitrivial binary operations on {1,...,n} that have annihilator elements.

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[x/(x+3-2Exp[x]),{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Aug 01 2019 *)
  • PARI
    concat(0, Vec(serlaplace(x/(x+3-2*exp(x))))) \\ Michel Marcus, Sep 27 2017

Formula

a(n) = n*A292932(n-1).
a(n) ~ n! / ((r-1) * (r-3)^n), where r = -LambertW(-1, -2*exp(-3)) = 3.5830738760366909976807989989303134394318270218566... - Vaclav Kotesovec, Sep 27 2017

A292932 Number of quasitrivial semigroups on an arbitrary n-element set.

Original entry on oeis.org

1, 1, 4, 20, 138, 1182, 12166, 146050, 2003882, 30930734, 530477310, 10007736906, 205965058162, 4592120925862, 110259944144486, 2836517343551714, 77836238876829882, 2269379773783175454, 70057736432648552782, 2282895953541692345722
Offset: 0

Author

Jean-Luc Marichal, Sep 27 2017

Keywords

Comments

Number of associative and quasitrivial binary operations on {1,...,n}. Convention a(0)=1.

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/(3+x-2*Exp(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 21 2019
    
  • Mathematica
    With[{m=30}, CoefficientList[Series[1/(3+x-2*Exp[x]), {x,0,m}], x]*Range[0,m]!] (* G. C. Greubel, May 21 2019 *)
  • PARI
    my(x='x + O('x^30)); Vec(serlaplace(1/(x+3-2*exp(x)))) \\ Michel Marcus, May 21 2019
    
  • Sage
    m = 30; T = taylor(1/(3+x-2*exp(x)), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 21 2019

Formula

E.g.f.: 1/(3 + x - 2*exp(x)).
Recurrence: a(0) = 1, a(n+1) = (n+1)*a(n) + 2*Sum_{k=0...n-1} binomial(n+1,k)*a(k).
Explicit form: a(n) = Sum_{i=0...n} Sum_{k=0...n-i} 2^i * (-1)^k * binomial(n,k) * S2(n-k,i) * (i+k)!, where S2(n,k) are the Stirling numbers of the second kind.
a(n) ~ n! / ((r-1) * (r-3)^(n+1)), where r = -LambertW(-1, -2*exp(-3)) = 3.5830738760366909976807989989303134394318270218566... - Vaclav Kotesovec, Sep 27 2017

A127685 Number of non-isomorphic maximal independent sets of the n-cycle graph.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 5, 7, 6, 10, 9, 14, 14, 20, 20, 30, 31, 44, 48, 67, 74, 104, 117, 161, 188, 254, 302, 407, 489, 654, 801, 1064, 1315, 1742, 2174, 2867, 3613, 4747, 6019, 7900, 10069, 13190, 16895, 22103, 28413, 37150, 47900, 62590, 80912
Offset: 1

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Comments

Number of non-isomorphic (i.e. defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph. Also: Number of cyclic compositions of n in which each term is either 2 or 3, where a clockwise writing is not distinguished from its counterclockwise counterpart.

References

  • R. Bisdorff and J.-L. Marichal, Counting non-isomorphic maximal independent sets of the n-cycle graph, ar2007.

Crossrefs

Formula

a(n) = A127682(n) + Sum(d divides n) A127683(d) = (1/2)*(A127682(n) + (1/n)*(Sum(d divides n) A000010(n/d) A001608(d)))

A127686 Number of non-isomorphic maximal independent sets of the n-cycle graph having no symmetry axis.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 15, 16, 27, 30, 46, 55, 80, 96, 139, 168, 237, 293, 403, 503, 687, 864, 1164, 1477, 1974, 2516, 3348, 4282, 5668, 7284, 9604, 12374, 16279, 21022, 27597, 35718, 46819, 60693, 79480, 103174
Offset: 1

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Comments

Number of non-isomorphic (i.e. defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph having no symmetry axis. Also: Number of cyclic and non-palindromic compositions of n in which each term is either 2 or 3, where a clockwise writing is not distinguished from its counterclockwise counterpart.

Crossrefs

Formula

a(n) = Sum(d divides n) A127683(d) = A127685(n) - A127682(n)

A127684 Number of non-isomorphic (i.e., defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph having n isomorphic representatives.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 2, 2, 3, 3, 2, 5, 5, 6, 7, 9, 7, 13, 12, 16, 15, 24, 19, 32, 28, 44, 37, 58, 46, 81, 63, 104, 86, 145, 110, 189, 151, 257, 200, 339, 260, 460, 351, 599, 464, 813, 610, 1069, 816, 1431, 1078, 1889, 1424, 2530, 1897, 3323, 2513, 4452, 3319
Offset: 1

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Crossrefs

Formula

a(n) = (Sum(d divides n) mu(n/d) A127682(d)) + (A127683(n/2)*[n even]).
a(n) = (Sum(d divides n) mu(n/d) A127682(d)) + (A127683(n/2)*[n even])

A127682 Number of non-isomorphic (i.e., defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph having at least one symmetry axis. Also: Number of cyclic and palindromic compositions of n in which each term is either 2 or 3.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 4, 7, 5, 9, 7, 12, 9, 16, 12, 21, 16, 28, 21, 37, 28, 49, 37, 65, 49, 86, 65, 114, 86, 151, 114, 200, 151, 265, 200, 351, 265, 465, 351, 616, 465, 816, 616, 1081, 816, 1432, 1081, 1897, 1432, 2513, 1897, 3329, 2513, 4410, 3329
Offset: 1

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Crossrefs

Cf. A000931.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x^2*(x^4+x^3+x^2+x+1)/(x^6+x^4-1),{x,0,63}],x]] (* Vaclav Kotesovec, Mar 29 2014 *)
    LinearRecurrence[{0,0,0,1,0,1},{0,1,1,1,1,2},70] (* Harvey P. Dale, Jul 17 2014 *)
  • PARI
    concat(0, Vec(-x^2*(x^4+x^3+x^2+x+1)/(x^6+x^4-1) + O(x^100))) \\ Colin Barker, Mar 29 2014

Formula

a(n) = A000931(k+3) if n=2k-1 and a(n) = A000931(k+5) if n=2k.
a(n) = a(n-4) + a(n-6).
G.f.: -x^2*(x^4+x^3+x^2+x+1) / (x^6+x^4-1). - Colin Barker, Mar 29 2014

A127687 Number of unlabeled maximal independent sets in the n-cycle graph.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 3, 2, 4, 3, 5, 6, 7, 7, 11, 11, 16, 19, 24, 28, 39, 46, 60, 75, 97, 120, 159, 197, 257, 327, 422, 539, 700, 892, 1157, 1488, 1928, 2479, 3219, 4148, 5383, 6961, 9029, 11687, 15184, 19673, 25564, 33174, 43125, 56010, 72868, 94719, 123283
Offset: 1

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Comments

Number of unlabeled (i.e., defined up to a rotation) maximal independent sets in the n-cycle graph. Also: Number of cyclic compositions of n in which each term is either 2 or 3.
(a(n)*n - A001608(n)) mod 2 is a binary sequence of period 14: [0,0,0,0,0,1,0,0,0,1,0,1,0,1]. - Richard Turk, Aug 25 2017

Crossrefs

Programs

  • Maple
    with(numtheory):
    perrin:=proc(n) option remember: if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else perrin(n-2)+perrin(n-3) fi end:
    a:=proc(n) local d,N:d:=divisors(n);N:=nops(d):
    add(phi(n/d[k])*perrin(d[k]),k=1..N)/n end:
    seq(a(n),n=1..50);
    # Robert FERREOL, Apr 10 2024
  • Mathematica
    (* p = A001608 *) p[n_] := p[n] = p[n - 2] + p[n - 3]; p[0] = 3; p[1] = 0; p[2] = 2; A113788[n_] := (1/n)*Sum[MoebiusMu[n/d]*p[d], {d, Divisors[n]}]; a[n_] := Sum[A113788[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Jul 16 2012, from formula *)
  • PARI
    N = 66;  x = 'x + O('x^N);
    f(x) = x^2+x^3;
    gf = 'c0 + sum(n=1,N, eulerphi(n)/n*log(1/(1-f(x^n)))  );
    v = Vec(gf); v[1]-='c0; v  /* includes a(0)=0 */
    /* Joerg Arndt, Jan 21 2013 */

Formula

a(n) = Sum_{d|n} A113788(d) = 2 * A127685(n) - A127682(n) = (1/n)*(Sum_{d|n} A000010(n/d) * A001608(d)).
G.f.: Sum_{k>=1} (phi(k)/k) * log( 1/(1-B(x^k)) ) where B(x) = x^2 + x^3. - Joerg Arndt, Jan 21 2013

A127683 Number of non-isomorphic (i.e., defined up to a rotation and a reflection) maximal independent sets of the n-cycle graph having 2n isomorphic representatives.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 2, 5, 4, 8, 9, 15, 16, 27, 30, 46, 54, 80, 96, 139, 167, 237, 292, 403, 501, 687, 862, 1164, 1472, 1974, 2512, 3347, 4274, 5668, 7275, 9604, 12359, 16278, 21006, 27597, 35690, 46819, 60663, 79478, 103128
Offset: 1

Author

Jean-Luc Marichal (jean-luc.marichal(AT)uni.lu), Jan 24 2007

Keywords

Crossrefs

Formula

a(n) = (1/2)*(A113788(n) - Sum_{d|n} mu(n/d)*A127682(d)).