-
a001333 n = a001333_list !! n
a001333_list = 1 : 1 : zipWith (+)
a001333_list (map (* 2) $ tail a001333_list)
-- Reinhard Zumkeller, Jul 08 2012
-
[n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
-
A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
with(numtheory): cf := cfrac (sqrt(2),1000): [seq(nthnumer(cf,i), i=0..50)];
a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
seq(a(n), n=0..33); # Alois P. Heinz, Aug 01 2008
A001333List := proc(m) local A, P, n; A := [1,1]; P := [1,1];
for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
-
Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
a=c=0;t={b=1}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
-
{a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
-
{a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
-
a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
-
{ for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
-
from functools import cache
@cache
def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
-
from sage.combinat.sloane_functions import recur_gen2
it = recur_gen2(1,1,2,1)
[next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
-
[lucas_number2(n,2,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
Comments