cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094706 Convolution of Pell(n) and 2^n.

Original entry on oeis.org

0, 1, 4, 13, 38, 105, 280, 729, 1866, 4717, 11812, 29365, 72590, 178641, 438064, 1071153, 2613138, 6362965, 15470140, 37565389, 91125206, 220864377, 534951112, 1294960905, 3133261530, 7578261181, 18323338324, 44292046693, 107041649438
Offset: 0

Views

Author

Paul Barry, May 21 2004

Keywords

Crossrefs

Cf. A000079, A000129 (Pell numbers), A101164, A255494.

Programs

  • Magma
    I:=[0, 1, 4]; [n le 3 select I[n] else 4*Self(n-1)-3*Self(n-2)-2*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 24 2012
    
  • Mathematica
    LinearRecurrence[{4,-3, -2},{0,1,4},40] (* Vincenzo Librandi, Jun 24 2012 *)
  • Sage
    [lucas_number1(n+2, 2, -1) - 2^(n+1) for n in (0..30)] # G. C. Greubel, Sep 16 2021

Formula

G.f.: x/((1-2*x-x^2)*(1-2*x)).
a(n) = Sum_{k=0..n} ((1+sqrt(2))^n - (1-sqrt(2))^n)/(2*sqrt(2))*2^(n-k).
a(n) = (1 + 3*sqrt(2)/4)*(1 + sqrt(2))^n + (1 - 3*sqrt(2)/4)*(1-sqrt(2))^n - 2^(n+1).
a(n) = 4*a(n-1) - 3*a(n-2) - 2*a(n-3).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k+1)*2^(n-2k-1);
a(n) = Sum_{k=0..n} binomial(k, n-k+1)*2^k*(1/2)^(n-k+1). - Paul Barry, Oct 07 2004
a(n) = sum of n-th row in A101164 = A000129(n) - A000079(n). - Reinhard Zumkeller, Dec 03 2004
a(n) = A000129(n+2) - 2^(n+1). - R. J. Mathar, Jan 29 2012
a(n) = 2*a(n-1) + A000129(n), with a(0) = 0, a(1) = 1. - G. C. Greubel, Sep 20 2021