cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094715 a(n) = Sum_{2*i+3*j=n, 0<=i<=n, 0<=j<=n} n!/( (2*i)!*(3*j)! ).

Original entry on oeis.org

1, 0, 1, 1, 1, 10, 2, 35, 29, 85, 211, 220, 926, 1001, 3095, 5461, 9829, 25126, 37130, 97223, 164921, 349525, 728575, 1309528, 2973350, 5326685, 11450531, 22369621, 43942081, 91869970, 174174002, 365088395, 708653429, 1431655765, 2884834891
Offset: 0

Views

Author

Benoit Cloitre, May 23 2004

Keywords

Comments

Average of binomial and inverse binomial transform of {1, 0, 0, 1, 0, 0, 1, ...}. - Paul Barry, Jan 04 2005

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-2*x^2-x^3+x^4-x^5)/((1-2*x)*(1-x+x^2)*(1+3*x+3*x^2)) )); // G. C. Greubel, Feb 13 2023
    
  • Maple
    A094715_list := proc(n) local i; (exp(z)+2*exp(-z/2)*cos(z*sqrt(3/4)))*cosh(z)/3;  series(%,z,n+2): seq(i!*coeff(%,z,i),i=0..n) end: A094715_list(34); # Peter Luschny, Jul 10 2012
  • Mathematica
    Table[(1/6)*(Boole[n==0] +2^n +2*ChebyshevU[n,1/2] -ChebyshevU[n-1, 1/2] +2*3^(n/2)*ChebyshevU[n, -Sqrt[3]/2] +3^((n+1)/2)*ChebyshevU[n- 1, -Sqrt[3]/2]), {n,0,50}] (* G. C. Greubel, Feb 13 2023 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,if(n-2*i-3*j,0,n!/(2*i)!/(3*j)!)))
    
  • SageMath
    def A094715_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1-2*x^2-x^3+x^4-x^5)/((1-2*x)*(1-x+x^2)*(1+3*x+3*x^2)) ).list()
    A094715_list(50) # G. C. Greubel, Feb 13 2023

Formula

Limit_{n --> oo} a(n)/2^n = 1/6.
G.f.: (1-2*x^2-x^3+x^4-x^5)/((1-2*x)*(1-x+x^2)*(1+3*x+3*x^2)). - Vladeta Jovovic, May 23 2004
a(n) = (1/3)*Sum_{k=0..floor(n/2)} C(n, 2*k)*(2*cos(2*Pi*(n-2*k)/3) + 1). - Paul Barry, Jan 04 2005 [corrected by Jason Yuen, Aug 28 2024]
E.g.f.: (exp(z) + 2*exp(-z/2)*cos(z*sqrt(3/4)))*cosh(z)/3. - Peter Luschny, Jul 10 2012
a(n) = (1/6)*([n=0] + 2^n + 2*A010892(n) - A010892(n-1) + 2*A000748(n) + 3*A000748(n-1)). - G. C. Greubel, Feb 13 2023