A094776 a(n) = largest k such that the decimal representation of 2^k does not contain the digit n.
86, 91, 168, 153, 107, 71, 93, 71, 78, 108
Offset: 0
Examples
a(0) = 86 because 2^86 = 77371252455336267181195264 is conjectured to be the highest power of 2 that doesn't contain the digit 0.
References
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 71, p. 25, Ellipses, Paris 2008.
Links
- Tanya Khovanova, 86 Conjecture, T. K.'s Math Blog, Feb. 15, 2011.
- Popular Computing (Calabasas, CA), Two Tables, Vol. 1, (No. 9, Dec 1973), page PC9-16.
Crossrefs
Programs
-
Mathematica
f[n_] := Block[{a = {}, k = 1}, While[k < 10000, If[ Position[ Union[ IntegerDigits[ 2^k, 10]], n] == {}, AppendTo[a, k]]; k++ ]; a]; Table[ f[n][[ -1]], {n, 0, 9}] (* Robert G. Wilson v, Jun 12 2004 *)
-
PARI
A094776(n,L=10*20^#Str(n))={forstep(k=L, 0, -1, foreach(digits(1<
M. F. Hasler, Feb 13 2023 -
Python
def A094776(n, L=0): n = str(n) for k in range(L if L else 10*20**len(n), 0, -1): if n not in str(2**k): return k # M. F. Hasler, Feb 13 2023
Comments