A094784 Numbers that are neither squares nor cubes.
2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 82
Offset: 1
References
- R. Honsberger, Mathematical Chestnuts from Around the World, MAA, 2001; see p. 168.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- J. Gebel, Integer points on Mordell curves [Cached copy, after the original web site tnt.math.se.tmu.ac.jp was shut down in 2017]
Crossrefs
Programs
-
Haskell
a094784 n = a094784_list !! (n-1) a094784_list = [x | x <- [0..], a010052 x == 0, a010057 x == 0] -- Reinhard Zumkeller, Jan 31 2012
-
Magma
[n: n in [0..90] | not IsSquare(n) and not IsPower(n,3)]; // Bruno Berselli, Feb 22 2016
-
Mathematica
Select[Range[100], !IntegerQ[#^(1/2)] && !IntegerQ[#^(1/3)]&] (* Jean-François Alcover, Feb 07 2020 *)
-
PARI
is(n)=!issquare(n) && !ispower(n,3) \\ Charles R Greathouse IV, Oct 19 2015
-
Python
from math import isqrt from sympy import integer_nthroot def A094784(n): def f(x): return n+isqrt(x)+integer_nthroot(x,3)[0]-integer_nthroot(x,6)[0] m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jun 05 2025
Extensions
Definition corrected by Rick L. Shepherd, Aug 11 2004
Comment corrected by Reinhard Zumkeller, Jul 18 2010
Comments