cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094798 Number of times 1 is used in writing out all the numbers 1 through n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18
Offset: 1

Views

Author

Lekraj Beedassy, Jun 11 2004

Keywords

Comments

The number of 1's required to write all integers of n or fewer digits (i.e., the sequence a(9), a(99), a(999), ...) is 1, 20, 300, 4000, ..., which is A053541. - Jason D. W. Taff (jtaff(AT)jburroughs.org), Dec 05 2004
A014778 gives the fixed points. - David Wasserman, Feb 22 2005
Partial sums of A268643. - Robert Israel, Oct 28 2016

Crossrefs

Programs

  • Maple
    nones:=proc(n) local nn,c,j: nn:=convert(n,base,10): c:=0: for j to nops(nn) do if nn[j]=1 then c:=c+1 else end if end do: c end proc: a:=proc(n) options operator, arrow: add(nones(k),k=1..n) end proc: seq(a(n),n=1..75); # Emeric Deutsch, Mar 01 2008
    ListTools:-PartialSums([seq(numboccur(1,convert(n,base,10)),n=1..100)]); # Robert Israel, Oct 28 2016
  • Mathematica
    Accumulate[Table[DigitCount[n,10,1],{n,80}]] (* Harvey P. Dale, Sep 27 2013 *)
  • PARI
    a(n) = sum(k=1, n, #select(x->(x==1), digits(k))); \\ Michel Marcus, Oct 03 2023
  • Python
    from itertools import accumulate, count, islice
    def f(, n): return  + str(n).count("1")
    def agen(): yield from accumulate(count(1), f)
    print(list(islice(agen(), 75))) # Michael S. Branicky, Aug 09 2022
    

Formula

G.f. g(x) satisfies g(x) = x/((1-x)*(1-x^10)) + ((1-x^10)/(1-x))^2*g(x^10). - Robert Israel, Oct 28 2016 [corrected by Fabio VisonĂ , Aug 10 2022]