cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A094841 Let p = n-th odd prime. Then a(n) = least positive integer congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 77683, 77683, 1333963, 2404147, 2404147, 20950603, 36254563, 51599563, 96295483, 96295483, 114148483, 269497867, 269497867, 269497867, 269497867, 585811843, 52947440683
Offset: 1

Views

Author

N. J. A. Sloane, Jun 13 2004

Keywords

Comments

(a(n-1) + 1)/4 is the least positive integer c such that x^2 + x + c is not divisible by the first n primes. This implies that a(n) is congruent to 19 mod 24 and that a(n) is congruent to 43 or 67 mod 120 for n > 1. - William P. Orrick, Mar 19 2017
With an initial a(0) = 3, a(n) is the negated fundamental discriminant D < 0 with the least absolute value such that the first n + 1 primes are inert in the imaginary quadratic field with discriminant D. See A094847 for the real discriminant case. - Jianing Song, Feb 15 2019

Crossrefs

Cf. A094847 (the real quadratic field case), A094848, A094849, A094850.
See A001986, A001987, A094845, A094846 for the case where the terms are restricted to the primes.
Cf. also A181667.

Programs

  • PARI
    isok(m, oddpn) = {forprime(q=3, oddpn, if (kronecker(-m, q) != -1, return (0));); return (1);}
    a(n) = {oddpn = prime(n+1); m = 3; while(! isok(m, oddpn), m += 8); m;} \\ Michel Marcus, Oct 17 2017

Formula

a(n) = 4*A181667(n+1) - 1. - William P. Orrick, Mar 19 2017

A001986 Let p be the n-th odd prime. Then a(n) is the least prime congruent to 3 modulo 8 such that Legendre(-a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

19, 43, 43, 67, 67, 163, 163, 163, 163, 163, 163, 222643, 1333963, 1333963, 2404147, 2404147, 20950603, 51599563, 51599563, 96295483, 96295483, 146161723, 1408126003, 3341091163, 3341091163, 3341091163, 52947440683, 52947440683, 52947440683, 193310265163
Offset: 1

Views

Author

Keywords

Comments

Numbers so far are all congruent to 19 mod 24. - Ralf Stephan, Jul 07 2003
All terms are congruent to 19 mod 24. - Jianing Song, Feb 17 2019
Also a(n) is the least prime r congruent to 3 mod 8 such that the first n odd primes are quadratic nonresidues modulo r. Note that r == 3 (mod 8) implies 2 is a quadratic nonresidue modulo r. See A001992 for the case where r == 5 (mod 8). - Jianing Song, Feb 19 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001992 (the congruent to 5 mod 8 case), A094851, A094852, A094853.
See A094841, A094842, A094843, A094844 for the case where the terms are not restricted to the primes.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(-p, q) != -1, return (0));); return (1);}
    a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 3, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 17 2017

Extensions

Revised by N. J. A. Sloane, Jun 14 2004
a(28)-a(30) from Jinyuan Wang, Apr 09 2020

A001992 Let p = n-th odd prime. Then a(n) = least prime congruent to 5 modulo 8 such that Legendre(a(n), q) = -1 for all odd primes q <= p.

Original entry on oeis.org

5, 53, 173, 173, 293, 2477, 9173, 9173, 61613, 74093, 74093, 74093, 170957, 360293, 679733, 2004917, 2004917, 69009533, 138473837, 237536213, 384479933, 883597853, 1728061733, 1728061733, 1728061733, 1728061733
Offset: 1

Views

Author

Keywords

Comments

All terms are congruent to 5 mod 24. - Jianing Song, Feb 17 2019
Also a(n) is the least prime r congruent to 5 mod 8 such that the first n odd primes are quadratic nonresidues modulo r. Note that r == 5 (mod 8) implies 2 is a quadratic nonresidue modulo r. See A001986 for the case where r == 3 (mod 8). - Jianing Song, Feb 19 2019

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001986 (the congruent to 3 mod 8 case), A001987, A094845, A094846.
See A094847, A094848, A094849, A094850 for the case where the terms are not restricted to the primes.

Programs

  • PARI
    isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -1, return (0));); return (1);}
    a(n) = {my(oddpn = prime(n+1)); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p));););} \\ Michel Marcus, Oct 17 2017

Extensions

Corrected and extended by N. J. A. Sloane, Jun 14 2004

A001987 Class numbers associated with terms of A001986.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 33, 79, 79, 107, 107, 311, 487, 487, 665, 665, 857, 2293, 3523, 3523, 3523, 13909, 13909, 13909, 26713, 29351, 29351, 59801, 70877, 70877, 70877, 70877, 296475, 296475, 296475, 296475, 3201195
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001986, A094846. See also A094842, A094851.

Extensions

Revised by N. J. A. Sloane, Jun 14 2004
Showing 1-4 of 4 results.