cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094888 Decimal expansion of 2*Pi*phi, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 0, 1, 6, 6, 4, 0, 7, 3, 8, 4, 6, 3, 0, 5, 1, 9, 6, 3, 1, 6, 1, 9, 0, 1, 8, 0, 2, 6, 4, 8, 4, 3, 9, 7, 6, 8, 3, 6, 6, 3, 6, 7, 8, 5, 8, 6, 4, 4, 2, 3, 0, 8, 2, 4, 0, 9, 6, 4, 6, 6, 5, 6, 1, 8, 4, 9, 9, 9, 5, 8, 2, 8, 6, 9, 0, 5, 3, 9, 7, 2, 0, 3, 7, 3, 2, 1, 7, 7, 2, 4, 0, 7, 0, 7, 8, 8, 4, 3
Offset: 2

Views

Author

N. J. A. Sloane, Jun 15 2004

Keywords

Examples

			10.16640738463051963161901802648439768366367858644230824...
		

Crossrefs

Integral_{x>=0} 1/(1+x^m) dx: A019669 (m=2), A248897 (m=3), A093954 (m=4), A352324 (m=5), A019670 (m=6), A352125 (m=8), this sequence (m=10).

Programs

  • Maple
    evalf(Pi*(1+sqrt(5)), 121);  # Alois P. Heinz, May 16 2022
  • Mathematica
    RealDigits[2 * Pi * GoldenRatio, 10, 100][[1]] (* Amiram Eldar, May 18 2021 *)

Formula

From Peter Bala, Nov 03 2019: (Start)
Equals 10*Integral_{x >= 0} cosh(4*x)/cosh(5*x) dx = Integral_{x = 0..1} (1 + x^8)/(1 + x^10) dx .
Equals 100*Sum_{n >= 0} (-1)^n*(2*n + 1)/( (10*n + 1)*(10*n + 9) ). (End)
Equals 10 * Product_{k>=2} 2/sqrt(2 + sqrt(2 + ... sqrt(2 + phi)...)), with k nested radicals (Baez, 2017). - Amiram Eldar, May 18 2021
Equals Integral_{x>=0} 1/(1 + x^10) dx = (Pi/10) * csc(Pi/10). - Bernard Schott, May 15 2022
Equals Gamma(1/10)*Gamma(9/10). - Andrea Pinos, Jul 03 2023
Equals 10 * Product_{k >= 1} (10*k)^2/((10*k)^2 - 1). - Antonio GraciĆ” Llorente, Mar 15 2024
Equals 10 * Product_{k>=2} (1 + (-1)^k/A090771(k)). - Amiram Eldar, Nov 23 2024
Equals 2*A094886 = 10*A135155/e. - Hugo Pfoertner, Nov 23 2024