cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258639 Decimal expansion of a constant related to A094926.

Original entry on oeis.org

5, 4, 1, 7, 2, 0, 0, 2, 1, 9, 5, 8, 1, 4, 4, 4, 3, 3, 8, 6, 9, 3, 2, 2, 8, 0, 2, 8, 7, 1, 7, 6, 7, 4, 3, 8, 4, 7, 7, 7, 0, 5, 7, 7, 1, 7, 3, 0, 5, 0, 0, 1, 3, 5, 1, 2, 3, 7, 3, 1, 1, 9, 2, 7, 9, 4, 1, 3, 7, 0, 8, 7, 0, 1, 0, 4, 1, 8, 2, 5, 3, 0, 2, 5, 8, 1, 4, 8, 7, 9, 1, 0, 1, 6, 7, 4, 3, 5, 0, 9, 6, 5, 0, 8, 6, 0
Offset: 0

Views

Author

Keywords

Examples

			0.541720021958144433869322802871767438477705771730500135123731192794137...
		

Crossrefs

Cf. A094926.

Formula

Equals limit n->infinity A094926(n) / phi^n, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

A094925 A hexagonal spiral Fibonacci sequence.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 20, 34, 55, 90, 148, 240, 394, 638, 1043, 1688, 2750, 4450, 7232, 11736, 19002, 30827, 49884, 80856, 130978, 211982, 343348, 555964, 899706, 1456702, 2358089, 3815834, 6176654, 9996926, 16176330, 26180456, 42368468, 68567892
Offset: 1

Views

Author

Keywords

Comments

Consider the following spiral:
.
a(6)----a(7)----a(8)
/ \
/ \
/ \
a(5) a(1)----a(2) a(9)
\ / /
\ / /
\ / /
a(14) a(4)----a(3) a(10)
\ /
\ /
\ /
a(13)---a(12)---a(11)
.
Then a(1)=1, a(n) = a(n-1) + Sum_{a(i) adjacent to a(n-1)} a(i). Here 6 terms around a(m) touch a(m).

Examples

			a(2) = a(1) = 1,
a(3) = a(1) + a(2) = 2,
a(4) = a(1) + a(2) + a(3) = 4,
a(5) = a(1) + a(3) + a(4) = 7,
a(6) = a(1) + a(4) + a(5) = 12,
a(7) = a(1) + a(5) + a(6) = 20, etc.
Thus:
         12----20----34
         /             \
        /               \
       7     1-----1    55
        \         /     /
         \       /     /
  638     4-----2    90
     \               /
      \             /
     394---240---148
		

Crossrefs

Formula

a(n) ~ c*phi^n with phi=1.61803... being the golden ratio and c = 0.78529667298898361017570049509486675274402985275383398273772345738007479334754... (conjectured). Cf. A094926. - Manfred Scheucher, Jun 03 2015

Extensions

a(15)-a(38) from Nathaniel Johnston, Apr 26 2011
Showing 1-2 of 2 results.