A335865 Moduli a(n) = v(n) for the simple difference sets of Singer type of order m(n) (v(n), m(n)+1, 1) in the additive group modulo v(n) = m(n)^2 + m(n) + 1, with m(n) = A000961(n).
3, 7, 13, 21, 31, 57, 73, 91, 133, 183, 273, 307, 381, 553, 651, 757, 871, 993, 1057, 1407, 1723, 1893, 2257, 2451, 2863, 3541, 3783, 4161, 4557, 5113, 5403, 6321, 6643, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 14763, 15751
Offset: 1
Examples
n = 2, m(2) = 2, a(2) = 2^2 + 2 + 1 = 7. The simple Singer difference set of order 2 is denoted by (7, 3, 1) (Fano plane). There are two classes (A335866(2) = 2) obtained from the representative difference sets {0, 1, 3} and {0, 1, 5} by element-wise addition of 1, 2, ..., 6 taken modulo 7. Each class consists of 7 simple difference sets.
Links
- Dan Gordon, Difference Sets
Formula
a(n) = m(n)^2 + m(n) + 1 , with m(n) = A000961(n), for n >= 1.
Extensions
Comments about difference sets moved from A138077 to here by Max Alekseyev, Apr 05 2022
Comments