cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A333852 Irregular triangle read by rows: representative simple difference sets of Singer type of order m, for m = A000961(n), for n >= 1.

Original entry on oeis.org

0, 1, 0, 1, 3, 0, 1, 5, 0, 1, 3, 9, 0, 1, 4, 6, 0, 1, 5, 11, 0, 1, 8, 10, 0, 1, 4, 14, 16, 0, 1, 6, 8, 18, 0, 1, 3, 8, 12, 18, 0, 1, 3, 10, 14, 26, 0, 1, 4, 6, 13, 21, 0, 1, 4, 10, 12, 17, 0, 1, 6, 18, 22, 29, 0, 1, 8, 11, 13, 17, 0, 1, 11, 19, 26, 28, 0, 1, 14, 20, 24, 29, 0, 1, 15, 19, 21, 24, 0, 1, 15, 20, 22, 28
Offset: 1

Views

Author

Wolfdieter Lang, Jul 26 2020

Keywords

Comments

The length of row n is (A000961(n) + 1)*A335866(n) = {2, 6, 16, 10, 60, 96, ...}. Every representative difference set begins with 0, 1, ... .
A simple difference set of Singer type of order m in the additive group (Z_v(m),+), with complete residue system modulo v(m) chosen as RS(v(m)) = {0, 1, ..., v(m)-1}, where v(m) := m^2 + m + 1, is denoted by (v(m), m+1, 1), provided m = m(n) = A000961(n) (powers of primes), for n >= 1. It is defined by a set of m+1 integers {a_0, a_1, ..., a_m}, with a_j from RS(v(m)) such that the m*(m+1) differences d_{i, j} := a_i - a_j (mod v(m)), with i not j, give (in some order) the nonzero members of RS(v(m)) i.e., {1,2, ..., (m+1)*m} exactly once. (v is a notation used in block designs, originating from 'variety'; see the Stinson reference, p. 2.)
A representative difference set of this type is one which uses 0 and 1 as elements. By adding each element of a given representative difference set by 1, 2, ..., (m+1)*m, modulo m^2 + m + 1, all m^2 + m + 1 members of a class of difference sets are obtained. This equivalence class is called Dev(D), the development of a difference set $D$. The number of representative difference sets, hence the number of classes, has been conjectured by Singer, and is given in A335866(n). The difference sets will here be ordered increasingly. The set of all A335866(n) representative difference sets of this type will here be denoted by Sr(m) (also increasingly ordered). See the W. Lang link for these representatives of order m = m(n) = A000961(n), for n = 1, 2, ..., 11. The set of all difference sets of order m will be denoted by S(m).
A symmetric BIBD (Balanced Incomplete Block Design) is a block design (X, A) (X a set of points, A a set of nonempty subsets of A, called blocks), denoted by (v, k, lambda) with v = |A|, k = |B_i|, v > k >= 2, for each block B_i from A, and each pair of distinct points of X appears exactly in lambda blocks. The number of appearances of each point of X (the replication number) is r = lambda*(v-1)/(k-1), and the number of blocks is b = v*r/k. For symmetric BIBDs v = b. See, e.g., the Stinson reference, p. 2 and pp. 41 - 58.
A symmetric and simple (lambda = 1) BIBD (symsBIBD) (m^2+m+1, m+1, 1), with k = r = m+1 and b = v = m*(m+1) + 1, is called a projective plane of order m, if m >= 2. The trivial case (3, 2, 1) for m = 1 (a triangle) is not regarded as a projective plane. m = 2 gives the Fano plane (7, 3, 1). See Stinson, p. 27, and the links. Not all m values allow such a symsBIBD. Singer proved that for m a power of a prime (including 1) such symsBIBD exist.
See the Singer reference, Theorem, pp. 380-381, where this is called a perfect difference set of order m + 1 (not m like here, and in Stinson). There only one representative is given for allowed m values. The other ones can be obtained by using certain multipliers M from the restricted residue system RRS(v = m^2+m+1), and omitting powers of divisors of m, applied to each entry, taken modulo v(m). There are A335866(n) - 1 other representative difference sets. For more details see Stinson, sect. 3.4., pp. 54-58. In the W. Lang link all representative difference sets for m = 1, 2, 3, 4, 5, 7, 8, 9, 11, 13 and 16 are given, with explanations on how to find them using Stinson's approach.
A general card game Dobble (see the Goertz link) can use v = m*(m+1) + 1 cards with k = m+1 distinct symbols from a repertoire of v distinct symbols, where m is a power of a prime. The task is to find out the one common symbol of any pair of cards. E.g., m = 7, v = 57, k = 8. One can compose 12 = A335866(6) possible such 57 card decks with different distributions of the 8 from 57 symbols.

Examples

			The irregular triangle T(n, k) begins (0 1 3 stands for the set {0, 1, 3}, etc., and a vertical bar separates the sets):
n,  m \ k  1 2 3  4  5 6 7 8 9 10 11 12 13 14 15  16 ...
--------------------------------------------------------
1,  1:     0 1
2,  2:     0 1 3| 0  1 5
3,  3:     0 1 3  9| 0 1 4 6|0  1  5 11| 0  1  8  10
4,  4:     0 1 4 14 16|0 1 6 8 18
...
--------------------------------------------------------
n = 5, m = 5: {0, 1, 3, 8, 12, 18}, {0, 1, 3, 10, 14, 26}, {0, 1, 4, 6, 13, 21}, {0, 1, 4, 10, 12, 17}, {0, 1, 6, 18, 22, 29}, {0, 1, 8, 11, 13, 17}, {0, 1, 11, 19, 26, 28}, {0, 1, 14, 20, 24, 29}, {0, 1, 15, 19, 21, 24}, {0, 1, 15, 20, 22, 28};
n = 6, m = 7: {0, 1, 3, 13, 32, 36, 43, 52}, {0, 1, 4, 9, 20, 22, 34, 51}, {0, 1, 4, 12, 14, 30, 37, 52}, {0, 1, 5, 7, 17, 35, 38, 49}, {0, 1, 5, 27, 34, 37, 43, 45}, {0, 1, 6, 15, 22, 26, 45, 55}, {0, 1, 6, 21, 28, 44, 46, 54}, {0, 1, 7, 19, 23, 44, 47, 49}, {0, 1, 7, 24, 36, 38, 49, 54}, {0, 1, 9, 11, 14, 35, 39, 51}, {0, 1, 9, 20, 23, 41, 51, 53}, {0, 1, 13, 15, 21, 24, 31, 53}.
...
For n = 7..11, that is m = 8, 9, 11, 13, 16, see the W. Lang link.
------------------------------------------------------------------
n = 1, m = 1, v = 3, difference set of type (3, 2, 1): There is only one representative set Sr(2) ={{0, 1}}, and the translates are {1, 2} and {2, 0}, reordered as {0, 2}, giving one class of three difference sets S(3) = {{0, 1}, {0, 2}, {1, 2}} (ordered lexicographically). This describes a triangle, not considered as a projective plane of order m = 1. {0, 1} is a simple difference set because 0 - 1 = -1 == 2 (mod 3), 1 - 0 = 1, and each nonzero element of RS(3) appeared exactly once.
		

References

  • Douglas R. Stinson, Combinatorial Designs, Springer, 2004.

Crossrefs

Programs

  • PARI
    \\ See second Ralf Goertz link
    \\ The function a333852_row(m,all=0) computes the complete row corresponding
    \\ to a given m of the table if "all" is 1. If "all" is set to 0 a random
    \\ choice of one of the normalized difference sets of order m is returned.

A335866 Number of classes of simple difference sets of the Singer type (m^2 + m + 1, m + 1, 1) with m = m(n) = A000961(n), for n >= 1.

Original entry on oeis.org

1, 2, 4, 2, 10, 12, 8, 12, 36, 40, 12, 102, 84, 156, 60, 84, 264, 220, 60, 264, 574, 420, 720, 252, 816, 1180, 768, 144, 840, 1704, 1200, 1176, 432, 2196, 2670, 2112, 3434, 2380, 3024, 2280, 3960, 1296, 1656, 3612, 672, 5764, 5184, 3984, 6120, 4368, 5512, 4752, 9352, 3120, 10034, 9204, 7176, 9360, 7128
Offset: 1

Views

Author

Wolfdieter Lang, Jul 26 2020

Keywords

Comments

For details on these simple difference sets see A333852, with references, and a W. Lang link.
The formula given below was conjectured by Singer for n >= 2 on p. 383. See also the table on p. 384.
This conjecture was later proved by Berman.

Examples

			n = 2, m(2) = 2 = 2^1, a(2) = phi(7)/(3*1) = 6/3 = 2. There are two classes of type (7,3,1) (Fano plane), with representatives {0, 1, 3} and {0, 1, 5}. The two equivalence classes (by elementwise addition of 1, 2, ..., 6 modulo 7) are Dev({0, 1, 3}) = {{0, 1, 3}, {0, 2, 6}, {0, 4, 5}, {1, 2, 4}, {1, 5, 6}, {2, 3, 5}, {3, 4, 6}, and Dev({0, 1, 5}) = {{0, 1, 5}, {0, 2, 3}, {0, 4, 6}, {1, 2, 6}, {1, 3, 4}, {2, 4, 5}, {3, 5, 6}}.
		

Crossrefs

Programs

  • PARI
    print1(1); for(q=2, 193 , if(n=isprimepower(q), print1(", ", eulerphi(q^2+q+1)/(3*n)))) \\ Martin Becker, Jun 11 2024

Formula

a(1) = 1, and a(n) = phi(v(n))/(3*e(n)), with phi = A000010 (Euler's totient), v(n) = A335865(n) = m(n)^2 + m(n) + 1, with m(n) = A000961(n), and e(n) = A025474(n), the exponent of the prime power dividing m(n), for n >= 2.

A138077 Index of the largest maximal subgroup of PSL(3,q) as q runs through the prime powers (A000961).

Original entry on oeis.org

7, 13, 21, 31, 57, 73, 91, 133
Offset: 1

Views

Author

John Cannon and N. J. A. Sloane, Dec 06 2009

Keywords

Comments

First eight entries agree with the ATLAS. - Eric M. Schmidt, Apr 21 2013
Is this sequence simply A335865 starting with the second term? - Max Alekseyev, Apr 04 2022

Crossrefs

Cf. A000961, A003807 (order of PSL(3,q)), A335865.

Programs

  • Sage
    def a138077_q(q): G = PSL(3,q); d = G.order(); return d // max(H.order() for H in G.conjugacy_classes_subgroups() if H.order()Max Alekseyev, Apr 05 2022

Extensions

a(3) corrected by Eric M. Schmidt, Apr 20 2013
Unconfirmed terms from a(9) onward removed by Max Alekseyev, Apr 05 2022

A342691 Primes of the form (p^k)^2 + p^k + 1 with prime p and positive integer k.

Original entry on oeis.org

7, 13, 31, 73, 307, 757, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 262657, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1772893, 1886503, 2037757, 2212657
Offset: 1

Views

Author

Martin Becker, May 18 2021

Keywords

Comments

Also, primes of the form (p^3^m)^2 + p^3^m + 1 with prime p and nonnegative integer m, since k must be a power of 3, from the theory of cyclotomic polynomials.

Examples

			31 = (5^1)^2 + 5^1 + 1 is in the sequence as 31 is prime and 5 is prime and 1 is a positive integer.
73 = (2^3)^2 + 2^3 + 1 is in the sequence as it is prime and 2 is prime and 3 is a positive integer.
		

Crossrefs

Contains A053183 and A063784.
Intersection of A335865 and A000040 minus {3}.

Programs

  • Mathematica
    Select[Table[q^2 + q + 1, {q, Select[Range[1500], PrimePowerQ[#] &]}], PrimeQ] (* Amiram Eldar, Aug 16 2024 *)
  • PARI
    for(q=2,2048,if(isprimepower(q),m=q^2+q+1;if(isprime(m),print1(m, ", "))))
Showing 1-4 of 4 results.