A095080 Fibeven primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with zero.
2, 3, 5, 7, 11, 13, 23, 29, 31, 37, 41, 47, 71, 73, 79, 83, 89, 97, 107, 109, 113, 131, 139, 149, 151, 157, 167, 173, 181, 191, 193, 199, 223, 227, 233, 241, 251, 257, 269, 277, 283, 293, 311, 317, 337, 353, 359, 367, 379, 397, 401, 409, 419, 421
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence
Programs
-
Maple
F:= combinat[fibonacci]: b:= proc(n) option remember; local j; if n=0 then 0 else for j from 2 while F(j+1)<=n do od; b(n-F(j))+2^(j-2) fi end: a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1)); do p:= nextprime(p); if b(p)::even then break fi od; p end: seq(a(n), n=1..100); # Alois P. Heinz, Mar 27 2016
-
Mathematica
F = Fibonacci; b[n_] := b[n] = Module[{j}, If[n == 0, 0, For[j = 2, F[j + 1] <= n, j++]; b[n - F[j]] + 2^(j - 2)]]; a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n - 1]]; While[True, p = NextPrime[p]; If[ EvenQ[b[p]], Break[]]]; p]; Array[a, 100] (* Jean-François Alcover, Jul 01 2021, after Alois P. Heinz *)
-
Python
from sympy import fibonacci, primerange def a(n): k=0 x=0 while n>0: k=0 while fibonacci(k)<=n: k+=1 x+=10**(k - 3) n-=fibonacci(k - 1) return x def ok(n): return str(a(n))[-1]=="0" print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017