cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095069 Number of fib101 primes (A095089) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 1, 9, 10, 20, 42, 64, 126, 251, 440, 828, 1560, 2967, 5656, 10769, 20419, 39327, 74826, 143516, 276217, 531587, 1025104, 1977596, 3821827, 7396083, 14326142, 27774012, 53875302, 104653661, 203380716
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A095061(n) - A095066(n).

Extensions

a(34)-a(35) from Amiram Eldar, Jun 13 2024

A134860 Wythoff AAB numbers; also, Fib101 numbers: those n for which the Zeckendorf expansion A014417(n) ends with 1,0,1.

Original entry on oeis.org

4, 12, 17, 25, 33, 38, 46, 51, 59, 67, 72, 80, 88, 93, 101, 106, 114, 122, 127, 135, 140, 148, 156, 161, 169, 177, 182, 190, 195, 203, 211, 216, 224, 232, 237, 245, 250, 258, 266, 271, 279, 284, 292, 300, 305, 313, 321, 326, 334, 339, 347, 355, 360, 368, 373
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004 and Clark Kimberling, Nov 14 2007

Keywords

Comments

The lower and upper Wythoff sequences, A and B, satisfy the complementary equations AAB=AA+AB and AAB=A+2B-1.
The asymptotic density of this sequence is 1/phi^4 = 2/(7+3*sqrt(5)), where phi is the golden ratio (A001622). - Amiram Eldar, Mar 21 2022

Crossrefs

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
Set-wise difference A003622 \ A095098. Cf. A095089 (fib101 primes).

Programs

  • Mathematica
    With[{r = Map[Fibonacci, Range[2, 14]]}, Position[#, {1, 0, 1}][[All, 1]] &@ Table[If[Length@ # < 3, {}, Take[#, -3]] &@ IntegerDigits@ Total@ Map[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] &,Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 373}]] (* Michael De Vlieger, Jun 09 2017 *)
  • Python
    from sympy import fibonacci
    def a(n):
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n): return str(a(n))[-3:]=="101"
    print([n for n in range(4, 501) if ok(n)]) # Indranil Ghosh, Jun 08 2017
    
  • Python
    from math import isqrt
    def A134860(n): return 3*(n+isqrt(5*n**2)>>1)+(n<<1)-1 # Chai Wah Wu, Aug 10 2022

Formula

a(n) = A(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence.

Extensions

This is the result of merging two sequences which were really the same. - N. J. A. Sloane, Jun 10 2017

A095081 Fibodd primes, i.e., primes p whose Zeckendorf-expansion A014417(p) ends with one.

Original entry on oeis.org

17, 19, 43, 53, 59, 61, 67, 101, 103, 127, 137, 163, 179, 197, 211, 229, 239, 263, 271, 281, 307, 313, 331, 347, 349, 373, 383, 389, 433, 449, 457, 467, 491, 499, 509, 569, 577, 593, 601, 619, 643, 653, 661, 677, 739, 773, 787, 797, 821, 823
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Intersection of A000040 and A003622. Union of A095086 and A095089. Cf. A095061, A095080.

Programs

  • Mathematica
    r = Map[Fibonacci, Range[2, 12]]; Select[Prime@ Range@ 144, Last@ Flatten@ Map[Position[r, #] &, Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], # + 1, # > 1 &]] == 1 &] (* Michael De Vlieger, Mar 27 2016, Version 10 *)
  • PARI
    genit(maxx)={for(n=1,maxx,q=(n-1)+(n+sqrtint(5*n^2))\2; if(isprime(q), print1(q,",")));} \\ Bill McEachen, Mar 26 2016
    
  • Python
    from sympy import fibonacci, primerange
    def a(n):
        k=0
        x=0
        while n>0:
            k=0
            while fibonacci(k)<=n: k+=1
            x+=10**(k - 3)
            n-=fibonacci(k - 1)
        return x
    def ok(n):
        return str(a(n))[-1]=="1"
    print([n for n in primerange(1, 1001) if ok(n)]) # Indranil Ghosh, Jun 07 2017
Showing 1-3 of 3 results.