A095111 One minus the parity of 1-fibits in Zeckendorf expansion A014417(n).
1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1
Offset: 0
Keywords
References
- Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Leonard Rozendaal, Pisano word, tesselation, plane-filling fractal, Preprint, 2017.
- Index entries for characteristic functions.
Crossrefs
Programs
-
Mathematica
1 - Mod[DigitCount[Select[Range[0, 540], BitAnd[#, 2 #] == 0 &], 2, 1], 2] (* Amiram Eldar, Feb 05 2023 *)
-
Python
def ok(n): return 1 if n==0 else n*(2*n & n == 0) print([1 - bin(n)[2:].count("1")%2 for n in range(1001) if ok(n)]) # Indranil Ghosh, Jun 08 2017
Formula
a(n) = 1 - A095076(n).
a(n) = a'(n+1) where a'(1) = 1 and if n >= 2 with F(k) < n <= F(k+1), a'(n)=1-a'(n-F(k)), where F(k) = A000045(k). E.g., F(5) = 5 < 6 <= F(6) = 8, thus a'(6) = 1 - a'(1) = 0 and a(5) = 0. - Benoit Cloitre, May 10 2005