cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095111 One minus the parity of 1-fibits in Zeckendorf expansion A014417(n).

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

References

  • Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.

Crossrefs

Characteristic function of A095096.
Run counts are given by A095276.

Programs

  • Mathematica
    1 - Mod[DigitCount[Select[Range[0, 540], BitAnd[#, 2 #] == 0 &], 2, 1], 2] (* Amiram Eldar, Feb 05 2023 *)
  • Python
    def ok(n): return 1 if n==0 else n*(2*n & n == 0)
    print([1 - bin(n)[2:].count("1")%2 for n in range(1001) if ok(n)]) # Indranil Ghosh, Jun 08 2017

Formula

a(n) = A010059(A003714(n)).
a(n) = 1 - A095076(n).
a(n) = a'(n+1) where a'(1) = 1 and if n >= 2 with F(k) < n <= F(k+1), a'(n)=1-a'(n-F(k)), where F(k) = A000045(k). E.g., F(5) = 5 < 6 <= F(6) = 8, thus a'(6) = 1 - a'(1) = 0 and a(5) = 0. - Benoit Cloitre, May 10 2005