cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095135 Indices of primes in A095134(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 22, 26, 29, 33, 37, 58, 75, 126, 127, 150, 205, 356, 424, 492, 661, 674, 697, 831, 1687, 2068, 3422, 3495, 4183, 4920, 5128
Offset: 1

Views

Author

Robert G. Wilson v, May 27 2004

Keywords

Crossrefs

Cf. A095134.

Programs

  • Mathematica
    f[n_] := Product[ Prime[i], {i, 2, n, 2}] + Product[ Prime[i], {i, 1, n, 2}]; f[1] = 2; Do[ If[ PrimeQ[ f[n]], Print[n]], {n, 2060}]

Extensions

a(36)-a(40) added by James G. Merickel, Jan 03 2013

A095136 Number of distinct prime factors of A095134(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 3, 2, 2, 1, 2, 2, 3, 1, 3, 2, 1, 2, 2, 4, 1, 3, 4, 3, 1, 2, 3, 4, 4, 2, 3, 4, 3, 3, 4, 3, 5, 3, 6, 3, 5, 4, 3, 4, 2, 1, 2, 3, 2, 3, 2, 5, 5, 4, 3, 4, 6, 5, 2, 5, 3, 4, 1, 4, 2, 2, 3, 4
Offset: 1

Views

Author

Robert G. Wilson v, May 27 2004

Keywords

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ #[[1]], {1} ] & /@ FactorInteger[n]]; f[n_] := Product[ Prime[i], {i, 2, n, 2}] + Product[ Prime[i], {i, 1, n, 2}]; f[1] = 2; Table[ Length[ PrimeFactors[ f[n]]], {n, 80}]

Formula

a(n) = A001221(A095134(n)). - Wesley Ivan Hurt, Jan 01 2024

A095137 Absolute difference between the product of the first floor(n/2) even-indexed primes and the product of the first floor(n/2) odd-indexed primes.

Original entry on oeis.org

2, 1, 7, 11, 89, 163, 1597, 3317, 37823, 107413, 1182887, 4232341, 49100059, 184657283, 2329965377, 10114830259, 138903895201, 622143222539, 9382665690241, 44778520855589, 686482057860331, 3598441529151191
Offset: 1

Views

Author

Robert G. Wilson v, May 28 2004

Keywords

Examples

			a(5) = 2*5*11 - 3*7 = 89, a(6) = 3*7*13 - 2*5*11 = 163;
a(7) = 2*5*11*17 - 3*7*13 = 1597, a(8) = 3*7*13*19 - 2*5*11*17 = 3317.
		

Crossrefs

Programs

  • Mathematica
    PrimeFactors[n_] := Flatten[ Table[ #[[1]], {1} ] & /@ FactorInteger[n]]; f[n_] := Abs[ Product[ Prime[i], {i, 2, n, 2}] + Product[ Prime[i], {i, 1, n, 2}]]; f[1] = 2; Table[ f[n], {n, 24}]
    Join[{2},Table[Abs[Times@@Prime[Range[1,Floor[n/2],2]]-Times@@Prime[Range[ 2,Floor[ n/2 ],2]]],{n,4,45,2}]] (* Harvey P. Dale, Jan 11 2023 *)

Formula

The absolute difference of Product_{j=1..floor(n/2)} p_(2j) (A066206) and Product_{k=1..floor(n/2)} p_(2j-1) (A066205).
Showing 1-3 of 3 results.