cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110256 Denominators in the fractional coefficients that form the partial quotients of the continued fraction representation of the inverse tangent of 1/x.

Original entry on oeis.org

1, 1, 4, 9, 64, 225, 256, 245, 16384, 99225, 65536, 480249, 1048576, 1002001, 4194304, 41409225, 1073741824, 2393453205, 4294967296, 4102737925, 68719476736, 940839860961, 274877906944, 4113258565689, 17592186044416
Offset: 1

Views

Author

Paul D. Hanna, Jul 18 2005

Keywords

Comments

Limit A110255(2*n-1)/a(2*n-1) = limit A110257(n)/A110258(n) = 4/Pi.
Limit A110255(2*n)/a(2*n) = limit A110259(n)/A110260(n) = Pi.

Examples

			arctan(1/x) = 1/x - 1/(3*x^3) + 1/(5*x^5) - 1/(7*x^7) +-...
= [0; x, 3*x, 5/4*x, 28/9*x, 81/64*x, 704/225*x, 325/256*x,
768/245*x, 20825/16384*x, 311296/99225*x, 83349/65536*x,
1507328/480249*x, 1334025/1048576*x, 3145728/1002001*x,...]
= 1/(x + 1/(3*x + 1/(5/4*x + 1/(28/9*x + 1/(81/64*x +...))))).
The coefficients of x in the even-indexed partial quotients converge to Pi:
{3, 28/9, 704/225, 768/245, 311296/99225, ...}.
The coefficients of x in the odd-indexed partial quotients converge to 4/Pi:
{1, 5/4, 81/64, 325/256, 20825/16384, ...}.
		

Crossrefs

Cf. A110255 (numerators), A110257/A110258 (odd-indexed), A110259/A110260 (even-indexed).
Cf. A095175. [From R. J. Mathar, Aug 18 2008]

Programs

  • PARI
    {a(n)=denominator(subst((contfrac( sum(k=0,n,(-1)^k/x^(2*k+1)/(2*k+1)),n+1))[n+1],x,1))}

A095159 Numerator of b(n) given by b(1) = 1, b(2) = 2; for n >= 3, b(n) = (-1)^n (2n-1) ((n-2)!!)^2/((n-1)!!)^2, where n!! is the double factorial A006882.

Original entry on oeis.org

1, 2, -5, 28, -81, 704, -325, 768, -20825, 311296, -83349, 1507328, -1334025, 3145728, -5337189, 130023424, -1366504425, 7516192768, -5466528925, 12884901888, -87470372561, 2954937499648, -349899121845, 12919261626368, -22394407746529, 52776558133248, -89580335298125
Offset: 1

Views

Author

N. J. A. Sloane, based on a suggestion of Leroy Quet, Jul 03 2004

Keywords

Comments

b(n) is such that the continued fraction [b(1); b(2), b(3),..., b(n)] is equal to sum{k=1 to n} 1/k = H(n) = the n-th harmonic number, for all positive integers n.
a(2n)/A095175(2n) -> pi as n -> inf.; a(2n+1)/A095175(2n+1) -> -4/pi as n -> inf. - Leroy Quet, Aug 03 2004

Examples

			1, 2, -5/4, 28/9, -81/64, 704/225, -325/256, 768/245, -20825/16384, 311296/99225, ...
		

Crossrefs

Showing 1-2 of 2 results.