cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095179 Numbers whose reversed digit representation is prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 14, 16, 17, 20, 30, 31, 32, 34, 35, 37, 38, 50, 70, 71, 73, 74, 76, 79, 91, 92, 95, 97, 98, 101, 104, 106, 107, 110, 112, 113, 118, 119, 124, 125, 128, 130, 131, 133, 134, 136, 140, 142, 145, 146, 149, 151, 152, 157, 160, 164, 166, 167, 170, 172
Offset: 1

Views

Author

Cino Hilliard, Jun 21 2004

Keywords

Comments

If m is a term, then 10*m is another term. - Bernard Schott, Nov 20 2021

Examples

			The number 70 in reverse is 07 = 7, which is prime.
		

Crossrefs

Cf. A004086, A007500 (primes in this sequence), A076055 (composites in this sequence), A204232 (base-2 analog), A097312.

Programs

  • Maple
    q:= n-> (s-> isprime(parse(cat(s[-i]$i=1..length(s)))))(""||n):
    select(q, [$1..200])[];  # Alois P. Heinz, Aug 22 2021
  • Mathematica
    Select[Range[200], PrimeQ[FromDigits[Reverse[IntegerDigits[#]]]] &] (* Harvey P. Dale, Jun 13 2013 *)
  • PARI
    r(n) = for(x=1,n,y=eval(rev(x));if(isprime(y),print1(x","))) \ Get the reverse of the input string rev(str) = { local(tmp,j,s); tmp = Vec(Str(str)); s=""; forstep(j=length(tmp),1,-1, s=concat(s,tmp[j])); return(s) }
    
  • PARI
    is_A095179(n)=isprime(eval(Strchr(vecextract(Vec(Vecsmall(Str(n))),"-1..1")))) \\ M. F. Hasler, Jan 13 2012
    
  • PARI
    isok(n) = isprime(fromdigits(Vecrev(digits(n)))); \\ Michel Marcus, Aug 22 2021
    
  • Python
    from sympy import isprime
    def ok(n): return isprime(int(str(n)[::-1]))
    print(list(filter(ok, range(1, 173)))) # Michael S. Branicky, Aug 22 2021

Extensions

Offset corrected to 1 by Alonso del Arte, Apr 12 2020