A095180 Reverse digits of primes, append to sequence if result is a prime.
2, 3, 5, 7, 11, 31, 71, 13, 73, 17, 37, 97, 79, 101, 701, 311, 131, 941, 151, 751, 761, 971, 181, 191, 991, 113, 313, 733, 743, 353, 953, 373, 383, 983, 107, 907, 727, 337, 937, 347, 157, 757, 167, 967, 787, 797, 709, 919, 929, 739, 149, 359, 769, 179, 389, 199
Offset: 1
Examples
The prime 107 in reverse is 701 which is prime.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..25000 (terms 1..206 from Roger L. Bagula and Gary W. Adamson)
- Eric Weisstein's World of Mathematics, Benford's Law.
- Index entries for sequences related to Benford's law
Programs
-
Haskell
a095180 n = a095180_list !! (n-1) a095180_list =filter ((== 1) . a010051) a004087_list -- Reinhard Zumkeller, Oct 14 2011
-
Mathematica
b = Flatten[Table[If[PrimeQ[Sum[IntegerDigits[Prime[n]][[i]]*10^(i - 1), {i, 1, Length[IntegerDigits[Prime[n]]]}]], Sum[IntegerDigits[Prime[n]][[i]]*10^(i - 1), {i, 1, Length[IntegerDigits[Prime[n]]]}], {}], {n, 1,1000}]] (* Roger L. Bagula and Gary W. Adamson, Jul 02 2008 *) Select[FromDigits[Reverse[IntegerDigits[#]]]&/@Prime[Range[300]],PrimeQ] (* Harvey P. Dale, May 05 2015 *)
-
PARI
r(n) = forprime(x=1,n,y=eval(rev(x));if(isprime(y),print1(y","))) \ Get the reverse of the input string rev(str) = { local(tmp,j,s); tmp = Vec(Str(str)); s=""; forstep(j=length(tmp),1,-1, s=concat(s,tmp[j])); return(s) }
Comments