cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095180 Reverse digits of primes, append to sequence if result is a prime.

Original entry on oeis.org

2, 3, 5, 7, 11, 31, 71, 13, 73, 17, 37, 97, 79, 101, 701, 311, 131, 941, 151, 751, 761, 971, 181, 191, 991, 113, 313, 733, 743, 353, 953, 373, 383, 983, 107, 907, 727, 337, 937, 347, 157, 757, 167, 967, 787, 797, 709, 919, 929, 739, 149, 359, 769, 179, 389, 199
Offset: 1

Views

Author

Cino Hilliard, Jun 21 2004

Keywords

Comments

Conjecture: the Benford law limit is 2=Sum[N[Log[10, 1 + 1/d[[n]]]], {n, 1, Length[d]}]^2/(( #totalprimes/#totalPrimes)). At 50000 primes total it is 2.05931. - Roger L. Bagula and Gary W. Adamson, Jul 02 2008
Presumably this does not satisfy Benford's law. - N. J. A. Sloane, Feb 09 2017

Examples

			The prime 107 in reverse is 701 which is prime.
		

Crossrefs

Programs

  • Haskell
    a095180 n = a095180_list !! (n-1)
    a095180_list =filter ((== 1) . a010051) a004087_list
    -- Reinhard Zumkeller, Oct 14 2011
  • Mathematica
    b = Flatten[Table[If[PrimeQ[Sum[IntegerDigits[Prime[n]][[i]]*10^(i - 1), {i, 1, Length[IntegerDigits[Prime[n]]]}]], Sum[IntegerDigits[Prime[n]][[i]]*10^(i - 1), {i, 1, Length[IntegerDigits[Prime[n]]]}], {}], {n, 1,1000}]] (* Roger L. Bagula and Gary W. Adamson, Jul 02 2008 *)
    Select[FromDigits[Reverse[IntegerDigits[#]]]&/@Prime[Range[300]],PrimeQ] (* Harvey P. Dale, May 05 2015 *)
  • PARI
    r(n) = forprime(x=1,n,y=eval(rev(x));if(isprime(y),print1(y","))) \ Get the reverse of the input string rev(str) = { local(tmp,j,s); tmp = Vec(Str(str)); s=""; forstep(j=length(tmp),1,-1, s=concat(s,tmp[j])); return(s) }