For convenience will we use here some special symbols in this formula section. We will use operations from the tropical semiring:
(+) -> min(b, c), (*) -> b+c, (/) -> b-c, (^) -> b*c.
Let's define the tropical polynomials P(x, m, k, n):
For k = 0: P(x, m, 0, n) = (x(^)2(/)m (+) m)(/)x.
For k > 0: We find M = min_{x = 1..n} P(x,m,k-1,n), then we find the set x = {X_1, ..., X_n} such that P(x,m,k-1,n) = M. If our set contains any pairs such that X_b = 1 + X_c then eliminate X_b from our set. Now we are ready to define the polynomial for k > 0:
P(x, m, k, n) = 1(/)( 1(/)P(x, m, k-1, n) (+) x(/)(x(^)2(/)X_1 (+) X_1) (+) .. (+) x(/)(x(^)2(/)X_n (+) X_n) ).
StartCase(m, n) = EqM(P(x ,m, 0, n))!*2^EqdM(P(x, m, 0, n))*EqM(P(x, m, 1, n))!*2^EqdM(P(x, m, 1, n))* ... *EqM(P(x, m, kmax, n))!*2^EqdM(P(x, m, kmax, n)), kmax is the greatest k where P(x,m,k,n) may evaluate to nonzero values for x in the range 1 to n.
EqM counts all x in the range 1 to n where P(x, m, k, n) evaluates to the overall minimum in this range of x, but we exclude from our count all solutions x where x-1 is a solution too.
EqdM counts all x in the range 1 to n where P(x, m, k, n) evaluates to the overall minimum in this range of x and P(x+1, m, k, n) evaluates to the same value.
a(n) = Sum_{m = 1..n} StartCase(m, n), m is the selection of the first phone in usage.
StartCase(m+b, n) = StartCase(n-b, n), for b = 0..floor(n/2).
StartCase(n, 2*n) = (1/2)*StartCase(1, 2*n), for n > 2.
StartCase(n, 2*n+1) = 2*StartCase(1, 2*n), for n > 1.
a(n) = floor(n/2)! * Combinations if only floor((n+1)/2) phone users arrive.
a(n) = Sum_{i=1..n} (b(i,1) + b(n+1-i,1))! * Product_{j=2..n-1} 2^(d(i,j) + d(n+1-i,j)) * (b(i,j) + b(n+1-i,j))! (See
A095236 for definition and calculation of b(p,k) and d(p,k)). -
Simon Wundling, May 21 2023
Comments