A095268 Number of distinct degree sequences among all n-vertex graphs with no isolated vertices.
1, 0, 1, 2, 7, 20, 71, 240, 871, 3148, 11655, 43332, 162769, 614198, 2330537, 8875768, 33924859, 130038230, 499753855, 1924912894, 7429160296, 28723877732, 111236423288, 431403470222, 1675316535350, 6513837679610, 25354842100894, 98794053269694, 385312558571890, 1504105116253904, 5876236938019298, 22974847399695092
Offset: 0
Keywords
Examples
a(4) = 7 because a 4-vertex graph with no isolated vertices can have degree sequence 1111, 2211, 2222, 3111, 3221, 3322 or 3333. From _Gus Wiseman_, Dec 31 2020: (Start) The a(0) = 1 through a(3) = 7 sorted degree sequences (empty column indicated by dot): () . (1,1) (2,1,1) (1,1,1,1) (2,2,2) (2,2,1,1) (2,2,2,2) (3,1,1,1) (3,2,2,1) (3,3,2,2) (3,3,3,3) For example, the complete graph K_4 has degrees y = (3,3,3,3), so y is counted under a(4). On the other hand, the only half-loop-graphs (up to isomorphism) with degrees y = (4,2,2,1) are: {(1),(1,2),(1,3),(1,4),(2,3)} and {(1),(2),(3),(1,2),(1,3),(1,4)}; and since neither of these is a graph (due to having half-loops), y is not counted under a(4). (End)
Links
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Table of n, a(n) for n = 0..1651 (terms 0 through 79 from Kai Wang)
- Paul Balister, Serte Donderwinkel, Carla Groenland, Tom Johnston, and Alex Scott, Counting graphic sequences via integrated random walks, arXiv:2301.07022 [math.CO], 2023.
- A. Iványi, L. Lucz, T. Matuszka and S. Pirzada, Parallel enumeration of degree sequences of simple graphs, Acta Univ. Sapiantiae, Inform.4 (2) (2012) 260-288.
- A. Iványi, G. Gombos, L. Lucz, and T. Matuszka, Parallel enumeration of degree sequences of simple graphs II, Acta Universitatis Sapientiae, Informatica, Volume 5, Issue 2 (Dec 2013).
- A. Iványi, L. Lucz, T. F. Móri and P. Sótér, On Erdős-Gallai and Havel-Hakimi algorithms, Acta Univ. Sapiantiae, Inform. 3 (2) (2011) 230-268.
- A. Kohnert, Number of different degree sequences of a graph with no isolated vertices, 2016.
- Frank Ruskey, Alley CATs in Search of Good Homes
- Kai Wang, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016. Gives 79 terms. But a(30) and a(31) are different.
- Eric Weisstein's World of Mathematics, Degree sequence
- Gus Wiseman, Counting and ranking factorizations, factorability, and vertex-degree partitions for groupings into pairs.
Crossrefs
Programs
-
Mathematica
Table[Length[Union[Sort[Table[Count[Join@@#,i],{i,n}]]&/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&]]],{n,0,5}] (* Gus Wiseman, Dec 31 2020 *)
Formula
a(n) ~ c * 4^n / n^(3/4) for some c > 0. Computational estimates suggest c ≈ 0.074321. - Tom Johnston, Jan 18 2023
Extensions
Edited by N. J. A. Sloane, Aug 26 2006
More terms from Gordon F. Royle, Aug 21 2006
a(21) and a(22) from Frank Ruskey, Aug 29 2006
a(23) from Frank Ruskey, Aug 31 2006
a(24)-a(29) from Matuszka Tamás, Jan 10 2013
a(30)-a(31) from articles by Kai Wang and Axel Kohnert, Apr 15 2016
a(0) = 1 and a(1) = 0 prepended by Gus Wiseman, Dec 31 2020
Comments