cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095291 Number of upper Wythoff primes (A095281) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 2, 1, 2, 2, 5, 9, 13, 35, 51, 93, 175, 331, 595, 1149, 2182, 4097, 7749, 14780, 28131, 53583, 102372, 196345, 375876, 722743, 1392156, 2684022, 5180823, 10008419, 19368226, 37499404, 72698062, 141064116
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

As expected, the ratio of a(n)/A036378(n) seems to approach 1-((sqrt(5)-1)/2) (= 0.381966011250...): 0, 1, 0.5, 0.4, 0.285714, 0.384615, 0.391304, 0.302326, 0.466667, 0.372263, 0.364706, 0.377155, 0.379587, 0.369107, 0.379208, 0.382204, 0.381152, 0.380039, 0.382555, 0.382287, 0.381819, 0.381677, 0.382211, 0.381283, 0.381572, 0.381858, 0.381943, 0.382013, 0.381895, 0.382035, 0.381935, 0.381947, 0.381953
Also expected, the ratio a(n)/A095061(n) seems to approach 1: 1, 0, 0, 1, 0.5, 1.25, 1.28571, 0.72222, 1.4, 0.94444, 0.88571, 0.98315, 0.99699, 0.93407, 0.98627, 0.99453, 0.98462, 0.9973, 0.99865, 1.0011, 1.00108, 0.99979, 1.00208, 0.99622, 0.99835, 1.00039, 0.99973, 1.00046, 0.99983, 1.00031, 0.99994, 0.99994, 1.00001

Crossrefs

a(n) = A036378(n)-A095290(n). Cf. A095061, A095290.

A184792 Numbers k such that floor(k*r) is prime, where r = golden ratio=(1+sqrt(5))/2.

Original entry on oeis.org

2, 7, 11, 12, 18, 23, 27, 33, 37, 38, 42, 44, 49, 60, 63, 64, 70, 79, 81, 85, 86, 101, 107, 111, 112, 122, 123, 131, 138, 142, 148, 149, 159, 163, 168, 174, 175, 190, 194, 196, 205, 215, 216, 222, 227, 231, 237, 241, 248, 253, 259, 268, 274, 278, 283, 285, 289, 301, 304, 309, 311, 315, 322, 348, 352, 353, 357, 363, 367, 372, 379, 383, 390, 398, 400, 404, 409, 416, 419, 457, 468, 478, 487, 493, 500, 508, 509, 519, 530, 531, 545, 546, 561, 568, 582, 589, 598
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2011

Keywords

Examples

			The sequence L(n)=floor(n*r) begins with
1,3,4,6,8,9,11,12,14,16,17,...,
which includes the primes L(2)=3, L(7)=11,...
		

Crossrefs

Programs

  • Mathematica
    r=(1+5^(1/2))/2; s=r/(r-1);
    a[n_]:=Floor [n*r];  (* A095280 *)
    b[n_]:=Floor [n*s];  (* A095281 *)
    Table[a[n],{n,1,120}]
    t1={};Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1
    t2={};Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2
    t3={};Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,300}];t3
    t4={};Do[If[PrimeQ[b[n]], AppendTo[t4,b[n]]],{n,1,600}];t4
    t5={};Do[If[PrimeQ[b[n]], AppendTo[t5,n]],{n,1,600}];t5
    t6={};Do[If[MemberQ[t4,Prime[n]],AppendTo[t6,n]],{n,1,300}];t6
    (* The lists t1, t2, t3, t4, t5, t6 match the sequences
    A095280, A184792, A184793, A095281, A184794, A184795 *)
    Select[Range[600],PrimeQ[Floor[GoldenRatio #]]&] (* Harvey P. Dale, Mar 28 2024 *)

A095280 Lower Wythoff primes, i.e., primes in A000201.

Original entry on oeis.org

3, 11, 17, 19, 29, 37, 43, 53, 59, 61, 67, 71, 79, 97, 101, 103, 113, 127, 131, 137, 139, 163, 173, 179, 181, 197, 199, 211, 223, 229, 239, 241, 257, 263, 271, 281, 283, 307, 313, 317, 331, 347, 349, 359, 367, 373, 383, 389, 401, 409, 419, 433
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

Contains all primes p whose Zeckendorf-expansion A014417(p) ends with an even number of 0's.
For generalizations and conjectures, see A184774.

Crossrefs

Intersection of A000040 & A000201. Complement of A095281 in A000040. Cf. A095080, A095083, A095084, A095290, A184792, A184793, A184794, A184796.

Programs

  • Maple
    R:= NULL: count:= 0:
    for n from 1 while count < 100 do
      p:= floor(n*phi);
      if isprime(p) then R:= R,p; count:= count+1 fi
    od:
    R; # Robert Israel, Jan 17 2023
  • Mathematica
    (See A184792.)
  • Python
    from math import isqrt
    from itertools import count, islice
    from sympy import isprime
    def A095280_gen(): # generator of terms
        return filter(isprime,((n+isqrt(5*n**2)>>1) for n in count(1)))
    A095280_list = list(islice(A095280_gen(),30)) # Chai Wah Wu, Aug 16 2022
Showing 1-3 of 3 results.