cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275462 Number of leaves in all simple labeled connected graphs on n nodes.

Original entry on oeis.org

0, 0, 2, 6, 48, 760, 21840, 1121568, 104510336, 18111498624, 5966666196480, 3794613745429760, 4704698796461841408, 11443317008255593064448, 54831540882238864189229056, 519046250316393184411087165440, 9726643425055315256306341282775040
Offset: 0

Views

Author

Geoffrey Critzer, Jul 28 2016

Keywords

Comments

A leaf is a vertex of degree 1.

Crossrefs

Cf. A095338.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, 2^(n*(n-1)/2)-
          add(k*binomial(n, k)* 2^((n-k)*(n-k-1)/2)*b(k), k=1..n-1)/n)
        end:
    a:= n-> n*(n-1)*b(n-1):
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 31 2016
  • Mathematica
    nn = 15; Clear[f];f[z_] := Sum[2^Binomial[n, 2] z^n/n!, {n, 0, nn + 1}];Range[0, nn]! CoefficientList[Series[ z z D[Log[f[z]], z] , {z, 0, nn}], z]

Formula

E.g.f.: x*A(x) = x^2* d[log(B(x))]/dx where A(x) is the e.g.f. for A053549 and B(x) is the e.g.f. for A006125.
For n>=1, a(n) = n*(n-1)*A001187(n-1).

A285529 Triangle read by rows: T(n,k) is the number of nodes of degree k counted over all simple labeled graphs on n nodes, n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 12, 6, 32, 96, 96, 32, 320, 1280, 1920, 1280, 320, 6144, 30720, 61440, 61440, 30720, 6144, 229376, 1376256, 3440640, 4587520, 3440640, 1376256, 229376, 16777216, 117440512, 352321536, 587202560, 587202560, 352321536, 117440512, 16777216
Offset: 1

Views

Author

Geoffrey Critzer, Apr 20 2017

Keywords

Examples

			1,
2,   2,
6,   12,   6,
32,  96,   96,   32,
320, 1280, 1920, 1280, 320,
...
		

Crossrefs

Row sums give A095340.
Columns for k=0-3: A123903, A095338, A038094, A038096.

Programs

  • Mathematica
    nn = 9; Map[Select[#, # > 0 &] &,
      Drop[Transpose[Table[A[z_] := Sum[Binomial[n, k] 2^Binomial[n, 2] z^n/n!, {n, 0, nn}];Range[0, nn]! CoefficientList[Series[z A[z], {z, 0, nn}], z], {k,0, nn - 1}]], 1]] // Grid

Formula

E.g.f. for column k: x * Sum_{n>=0} binomial(n,k)*2^binomial(n,2)*x^n/n!.
Sum_{k=1..n-1} T(n,k)*k/2 = A095351(n).
T(n,k) = n*binomial(n-1,k)*2^binomial(n-1,2). - Alois P. Heinz, Apr 21 2017
Showing 1-2 of 2 results.