cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A095382 Exponents of power of 2 of the largest terms arising in the 3x+1 iterations started with terms of A095381.

Original entry on oeis.org

0, 1, 4, 2, 4, 4, 3, 4, 4, 4, 6, 5, 6, 6, 8, 7, 10, 8, 10, 10, 8, 10, 10, 10, 10, 9, 10, 10, 10, 10, 10, 12, 11, 12, 12, 14, 13, 14, 16, 14, 16, 16, 16, 15, 16, 16, 16, 16, 18, 17, 18, 18, 20, 19, 20, 22, 20, 22, 22, 21, 22, 22, 22
Offset: 1

Views

Author

Labos Elemer, Jun 14 2004

Keywords

Crossrefs

Formula

a[n]=Log[2, A025586[A095381(n)]]

A095384 Number of different initial values for 3x+1 trajectories started with initial values not exceeding 2^n and in which the peak values are also not larger than 2^n.

Original entry on oeis.org

1, 2, 3, 4, 10, 13, 33, 55, 112, 181, 352, 580, 1072, 2127, 6792, 13067, 25906, 51447, 104575, 208149, 415921, 833109, 1661341, 3328124, 6648354, 13283680, 26533708, 53083687, 106166631, 212243709, 424564626, 848967377, 1698139390, 3396064464, 6791623786
Offset: 0

Views

Author

Labos Elemer, Jun 14 2004

Keywords

Examples

			n=4: between iv={1,2,...,16} {2,8}U{3,5,6,10,12,16} provides peak values smaller than or equal with 16, so a(4) = 10 = A087256(4)+4
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=1, 1,
          max(n, b(`if`(n::even, n/2, 3*n+1))))
        end:
    a:= proc(n) option remember; local t; t:=2^n;
          add(`if`(b(i)<=t, 1, 0), i=1..t)
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 26 2024
  • Mathematica
    c[x_]:=c[x]=(1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1);c[1]=1; fpl[x_]:=FixedPointList[c, x]; {$RecursionLimit=1000;m=0}; Table[Print[{xm-1, m}];m=0; Do[If[ !Greater[Max[fpl[n]], 2^xm], m=m+1], {n, 1, 2^xm}], {xm, 1, 30}]
    Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; Table[Length[Select[Range[x=2^n], Max[Collatz[#]] <= x &]], {n,0,10}] (* T. D. Noe, Apr 29 2013 *)

Extensions

a(21)-a(32) from Donovan Johnson, Feb 02 2011
a(0) from T. D. Noe, Apr 29 2013
a(33)-a(34) from Donovan Johnson, Jun 05 2013

A225124 a(n) = least number k such that 2^n is highest in Collatz(3x+1) trajectory of k.

Original entry on oeis.org

1, 2, 4, 8, 3, 32, 21, 128, 85, 512, 151, 2048, 1365, 8192, 5461, 32768, 14563, 131072, 87381, 524288, 349525, 2097152, 932067, 8388608, 5592405, 33554432, 22369621, 134217728, 26512143, 536870912, 357913941
Offset: 0

Views

Author

Jayanta Basu, Apr 29 2013

Keywords

Examples

			a(4)=3 since 3 is the least number such that largest member of Collatz(3 x + 1) trajectory of 3 is 2^4 = 16.
		

Crossrefs

Programs

  • Haskell
    a225124 = (+ 1) . fromJust . (`elemIndex` a025586_list) . a000079
    -- Reinhard Zumkeller, Apr 30 2013
  • Mathematica
    Coll[n_]:=NestWhileList[If[EvenQ[#],#/2,3*#+1]&,n,#>1 &]; t={}; Do[i=1; While[Max[Coll[i]] != 2^n, i++]; AppendTo[t, i], {n,0,25}]; t

A095383 Number of different initial values for 3x+1 trajectories started with initial values not exceeding 2^n and in which the peak values are larger than 2^n.

Original entry on oeis.org

0, 1, 4, 6, 19, 31, 73, 144, 331, 672, 1468, 3024, 6065, 9592, 19701, 39630, 79625, 157569, 316139, 632655, 1264043, 2532963, 5060484, 10128862, 20270752, 40575156, 81134041, 162268825, 324627203, 649177198, 1298516271, 2596827906
Offset: 1

Views

Author

Labos Elemer, Jun 14 2004

Keywords

Examples

			n=4: between iv={1,2,...,16} {7,9,11,13,14,15} provides
peak values larger than 16, so a[4]=6.
		

Crossrefs

Programs

  • Mathematica
    c[x_]:=c[x]=(1-Mod[x, 2])*(x/2)+Mod[x, 2]*(3*x+1);c[1]=1; fpl[x_]:=FixedPointList[c, x]; {$RecursionLimit=1000;m=0}; Table[Print[{xm-1, m}];m=0; Do[If[Greater[Max[fpl[n]], 2^xm], m=m+1], {n, 1, 2^xm}], {xm, 1, 30}]

Extensions

a(22)-a(32) from Donovan Johnson, Feb 02 2011
Showing 1-4 of 4 results.