A095660 Pascal (1,3) triangle.
3, 1, 3, 1, 4, 3, 1, 5, 7, 3, 1, 6, 12, 10, 3, 1, 7, 18, 22, 13, 3, 1, 8, 25, 40, 35, 16, 3, 1, 9, 33, 65, 75, 51, 19, 3, 1, 10, 42, 98, 140, 126, 70, 22, 3, 1, 11, 52, 140, 238, 266, 196, 92, 25, 3, 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3, 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3
Offset: 0
Examples
Triangle starts: 3; 1, 3; 1, 4, 3; 1, 5, 7, 3; 1, 6, 12, 10, 3; 1, 7, 18, 22, 13, 3; 1, 8, 25, 40, 35, 16, 3; 1, 9, 33, 65, 75, 51, 19, 3; 1, 10, 42, 98, 140, 126, 70, 22, 3; 1, 11, 52, 140, 238, 266, 196, 92, 25, 3; 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3; 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- Wolfdieter Lang, First 10 rows.
Crossrefs
Programs
-
Haskell
a095660 n k = a095660_tabl !! n !! k a095660_row n = a095660_tabl !! n a095660_tabl = [3] : iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3] -- Reinhard Zumkeller, Apr 08 2012
-
Magma
A095660:= func< n,k | n eq 0 select 3 else (1+2*k/n)*Binomial(n,k) >; [A095660(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
-
Maple
T(n,k):=piecewise(n=0,3,0
Mircea Merca, Apr 08 2012 -
Mathematica
{3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
-
Sage
def A095660(n,k): return 3 if n==0 else (1+2*k/n)*binomial(n,k) flatten([[A095660(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
Formula
Recursion: T(n, m)=0 if m>n, T(0, 0)= 3; T(n, 0)=1 if n>=1; T(n, m) = T(n-1, m) + T(n-1, m-1).
G.f. column m (without leading zeros): (3-2*x)/(1-x)^(m+1), m>=0.
T(n,k) = (1+2*k/n) * binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012
Closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013
Comments