A095668 Sixth column (m=5) of (1,4)-Pascal triangle A095666.
4, 21, 66, 161, 336, 630, 1092, 1782, 2772, 4147, 6006, 8463, 11648, 15708, 20808, 27132, 34884, 44289, 55594, 69069, 85008, 103730, 125580, 150930, 180180, 213759, 252126, 295771, 345216, 401016, 463760, 534072, 612612, 700077, 797202, 904761
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Programs
-
Magma
[(n+20)*Binomial(n+4, 4)/5: n in [0..30]]; // G. C. Greubel, Nov 25 2017
-
Maple
A095668:=n->(n+20)*binomial(n+4, 4)/5: seq(A095668(n), n=0..80); # Wesley Ivan Hurt, Nov 25 2017
-
Mathematica
Table[(n + 20)*Binomial[n + 4, 4]/5, {n, 0, 50}] (* G. C. Greubel, Nov 25 2017 *)
-
PARI
for(n=0,30, print1((n+20)*binomial(n+4, 4)/5, ", ")) \\ G. C. Greubel, Nov 25 2017
Formula
G.f.: (4-3*x)/(1-x)^6.
a(n) = (n+20)*binomial(n+4, 4)/5.
a(n) = 4*b(n) - 3*b(n-1), with b(n) = binomial(n+5, 5) = A000389(n+5, 5).
E.g.f.: (480 + 2040*x + 1680*x^2 + 440*x^3 + 40*x^4 + x^5)*exp(x)/120. - G. C. Greubel, Nov 25 2017
Comments