cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095668 Sixth column (m=5) of (1,4)-Pascal triangle A095666.

Original entry on oeis.org

4, 21, 66, 161, 336, 630, 1092, 1782, 2772, 4147, 6006, 8463, 11648, 15708, 20808, 27132, 34884, 44289, 55594, 69069, 85008, 103730, 125580, 150930, 180180, 213759, 252126, 295771, 345216, 401016, 463760, 534072, 612612, 700077, 797202, 904761
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

If Y is a 4-subset of an n-set X, then, for n >= 8, a(n-8) is the number of 5-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007

Crossrefs

Programs

  • Magma
    [(n+20)*Binomial(n+4, 4)/5: n in [0..30]]; // G. C. Greubel, Nov 25 2017
  • Maple
    A095668:=n->(n+20)*binomial(n+4, 4)/5: seq(A095668(n), n=0..80); # Wesley Ivan Hurt, Nov 25 2017
  • Mathematica
    Table[(n + 20)*Binomial[n + 4, 4]/5, {n, 0, 50}] (* G. C. Greubel, Nov 25 2017 *)
  • PARI
    for(n=0,30, print1((n+20)*binomial(n+4, 4)/5, ", ")) \\ G. C. Greubel, Nov 25 2017
    

Formula

G.f.: (4-3*x)/(1-x)^6.
a(n) = (n+20)*binomial(n+4, 4)/5.
a(n) = 4*b(n) - 3*b(n-1), with b(n) = binomial(n+5, 5) = A000389(n+5, 5).
E.g.f.: (480 + 2040*x + 1680*x^2 + 440*x^3 + 40*x^4 + x^5)*exp(x)/120. - G. C. Greubel, Nov 25 2017
a(n) = Sum_{i=0..n+1} A000217(i)*A055999(n+2-i). - Bruno Berselli, Mar 05 2018