A095683 Number of prime power divisors of n. If n = product p_i^r_i then d = product {p_i^s_i, 2 <= s_i <= r_i, s_i is prime} is a prime power divisor of n.
1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0
Offset: 1
Examples
n=16: prime power divisors of 16 are {2^2, 2^3}, so a(16) = 2.
Links
Programs
-
Mathematica
Array[Boole[# == 1] + Times @@ Map[PrimePi, FactorInteger[#][[All, -1]] ] &, 120] (* Michael De Vlieger, Jul 19 2017 *)
-
PARI
A095683(n) = { my(f = factor(n), m = 1); for (k=1, #f~, m *= primepi(f[k, 2]); ); m; } \\ Antti Karttunen, Jul 19 2017
-
Python
from sympy import factorint, primepi, prod def a(n): return 1 if n==1 else prod(primepi(e) for e in factorint(n).values()) print([a(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 19 2017
Formula
Multiplicative with a(p^e) = A000720(e). - Vladeta Jovovic, Jul 06 2004
Extensions
More terms from Vladeta Jovovic, Jul 06 2004
Comments