cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095718 a(n) = Sum_{k=0..n} floor(binomial(n,k)/(k+1)).

Original entry on oeis.org

1, 2, 3, 6, 9, 18, 30, 56, 101, 186, 339, 630, 1167, 2182, 4092, 7710, 14561, 27594, 52425, 99862, 190647, 364722, 699045, 1342176, 2581107, 4971024, 9586975, 18512790, 35791386, 69273666, 134217720, 260301046, 505290269, 981706808
Offset: 1

Views

Author

Mike Zabrocki, Jul 08 2004

Keywords

Comments

Row sums of A011847.

Crossrefs

Programs

  • Magma
    A095718:= func< n | (&+[Floor(Binomial(n,k)/(k+1)): k in [0..n]]) >;
    [A095718(n): n in [1..40]]; // G. C. Greubel, Oct 20 2024
    
  • Maple
    a:=n->add(floor(combinat[numbcomb](n,k)/(k+1)),k=0..n);
  • Mathematica
    A095718[n_]:= Sum[Floor[Binomial[n,k]/(k+1)], {k,0,n}];
    Table[A095718[n], {n,40}] (* G. C. Greubel, Oct 20 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)\(k+1)); \\ Michel Marcus, May 08 2018
    
  • SageMath
    def A095718(n): return sum(binomial(n,k)//(k+1) for k in range(n+1))
    [A095718(n) for n in range(1,41)] # G. C. Greubel, Oct 20 2024

Formula

a(n) = Sum_{k=0..n} floor(binomial(n,k)/(k+1)).
From Robert Israel, May 07 2018: (Start)
(2^(n+1)-1)/(n+1) >= a(n) >= (2^(n+1)-1)/(n+1) - n.
It appears that a(n) = (2^(n+1)-2)/(n+1) if n+1 is prime. (End)