cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095719 a(n) = Sum_{k = 0..floor(n/2)} floor(C(n-k,k)/(k+1)).

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 59, 90, 137, 210, 319, 492, 754, 1164, 1798, 2786, 4317, 6710, 10438, 16266, 25377, 39650, 62013, 97108, 152212, 238822, 375058, 589520, 927365, 1459960, 2300097, 3626211, 5720649, 9030450, 14263675
Offset: 1

Views

Author

Mike Zabrocki, Jul 08 2004

Keywords

Comments

Sums of diagonal entries in A011847.

Crossrefs

Programs

  • Magma
    A095719:= func< n | (&+[Floor(Binomial(n-k,k)/(k+1)): k in [0..Floor(n/2)]]) >;
    [A095719(n): n in [1..40]]; // G. C. Greubel, Oct 21 2024
    
  • Maple
    a:=n->add(floor(C(n-k,k)/(k+1)),k=0..n/2);
  • Mathematica
    Table[Sum[Floor[Binomial[n-k,k]/(k+1)],{k,0,n/2}],{n,40}] (* Harvey P. Dale, Apr 02 2019 *)
  • SageMath
    def A095719(n): return sum(binomial(n-k,k)//(k+1) for k in range(n//2+1))
    [A095719(n) for n in range(1,41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = Sum_{k=0..floor(n/2)} floor(C(n-k,k)/(k+1)).