A095768 a(n) = 2^(n+1) - n.
3, 6, 13, 28, 59, 122, 249, 504, 1015, 2038, 4085, 8180, 16371, 32754, 65521, 131056, 262127, 524270, 1048557, 2097132, 4194283, 8388586, 16777193, 33554408, 67108839, 134217702, 268435429, 536870884, 1073741795, 2147483618
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Programs
-
Mathematica
Table[2^(n + 1) - n, {n, 0, 31}] (* Robert G. Wilson v Jun 12 2004 *) LinearRecurrence[{4,-5,2},{3,6,13},40] (* Harvey P. Dale, Jan 02 2012 *)
-
Maxima
A095768(n):=2^(n+1)-n$ makelist(A095768(n),n,1,30); /* Martin Ettl, Nov 08 2012 */
-
PARI
a(n)=2^(n+1)-n \\ Charles R Greathouse IV, Oct 16 2015
Formula
From R. J. Mathar, Apr 30 2008: (Start)
O.g.f.: -x*(3-6*x+48*x^2)/((-1+x)^2*(-1+2*x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3). (End)
a(n) = A000247(n+1) + 3 = 2^(n+1) - n. - Martin Ettl, Nov 08 2012
E.g.f.: exp(x)*(2*exp(x) - x) - 2. - Elmo R. Oliveira, Mar 08 2025
Comments