cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A254105 Dispersion of A055938; starting from its complementary sequence A005187 as the first column of square array A(row,col), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 12, 13, 9, 7, 27, 28, 20, 14, 8, 58, 59, 43, 29, 17, 10, 121, 122, 90, 60, 36, 21, 11, 248, 249, 185, 123, 75, 44, 24, 15, 503, 504, 376, 250, 154, 91, 51, 30, 16, 1014, 1015, 759, 505, 313, 186, 106, 61, 33, 18, 2037, 2038, 1526, 1016, 632, 377, 217, 124, 68, 37, 19, 4084, 4085, 3061, 2039, 1271, 760, 440, 251, 139, 76, 40, 22
Offset: 1

Views

Author

Antti Karttunen, Jan 26 2015

Keywords

Comments

This sequence is one instance of Clark Kimberling's generic dispersion arrays. Paraphrasing his explanation in A191450, mutatis mutandis, we have the following definition:
Suppose that s is an increasing sequence of positive integers, that the complement t of s is infinite, and that t(1)=1. The dispersion of s is the array D whose n-th row is (t(n), s(t(n)), s(s(t(n))), s(s(s(t(n)))), ...). Every positive integer occurs exactly once in D, so that, as a sequence, D is a permutation of the positive integers. The sequence u given by u(n) = {index of the row of D that contains n} is a fractal sequence. In this case s(n) = A055938(n), t(n) = A005187(n) [from term A005187(1) onward] and u(n) = A254112(n).
For other examples of such sequences, see the Crossrefs section. For a general introduction, please follow the Kimberling references.
The main diagonal: 1, 6, 20, 60, 154, 377, 887, 2040, 4598, 10229, 22515, 49139, ...

Examples

			The top left corner of the array:
   1,  2,  5,  12,  27,  58,  121,  248,  503,  1014,  2037,  4084
   3,  6, 13,  28,  59, 122,  249,  504, 1015,  2038,  4085,  8180
   4,  9, 20,  43,  90, 185,  376,  759, 1526,  3061,  6132, 12275
   7, 14, 29,  60, 123, 250,  505, 1016, 2039,  4086,  8181, 16372
   8, 17, 36,  75, 154, 313,  632, 1271, 2550,  5109, 10228, 20467
  10, 21, 44,  91, 186, 377,  760, 1527, 3062,  6133, 12276, 24563
  11, 24, 51, 106, 217, 440,  887, 1782, 3573,  7156, 14323, 28658
  15, 30, 61, 124, 251, 506, 1017, 2040, 4087,  8182, 16373, 32756
  16, 33, 68, 139, 282, 569, 1144, 2295, 4598,  9205, 18420, 36851
  18, 37, 76, 155, 314, 633, 1272, 2551, 5110, 10229, 20468, 40947
etc.
		

Crossrefs

Inverse: A254106.
Transpose: A254107.
Column 1: A005187.
Cf. also A000325, A095768, A123720 (Seem to be rows 1 - 3, the last one from its second term onward.)
Columnd index of n: A254111, Row index: A254112.
Examples of other arrays of dispersions: A114537, A035513, A035506, A191449, A191450, A191426-A191455.

Programs

Formula

If col = 1, then A(row,col) = A005187(row), otherwise A(row,col) = A055938(A(row,col-1)).

A132045 Row sums of triangle A132044.

Original entry on oeis.org

1, 2, 3, 6, 13, 28, 59, 122, 249, 504, 1015, 2038, 4085, 8180, 16371, 32754, 65521, 131056, 262127, 524270, 1048557, 2097132, 4194283, 8388586, 16777193, 33554408, 67108839, 134217702, 268435429, 536870884, 1073741795, 2147483618, 4294967265, 8589934560
Offset: 0

Views

Author

Gary W. Adamson, Aug 08 2007

Keywords

Comments

Apart from initial terms, and with a change of offset, same as A095768. - Jon E. Schoenfield, Jun 15 2017

Examples

			a(4) = 13 = sum of row 4 terms of triangle A132044: (1 + 3 + 5 + 3 + 1).
a(4) = 13 = (1, 4, 6, 4, 1) dot (1, 1, 0, 2, 0) = (1 + 4 + 0 + 8 + 0).
		

Crossrefs

Programs

  • Magma
    [1] cat [2^n -n +1: n in [1..35]]; // G. C. Greubel, Feb 12 2021
  • Mathematica
    Table[2^n -(n-1) -Boole[n==0], {n, 0, 35}] (* G. C. Greubel, Feb 12 2021 *)
  • PARI
    Vec((1-2*x+2*x^3)/((1-x)^2*(1-2*x)) + O(x^100)) \\ Colin Barker, Mar 14 2014
    
  • Sage
    [1]+[2^n -n +1 for n in (1..35)] # G. C. Greubel, Feb 12 2021
    

Formula

Binomial transform of (1, 1, 0, 2, 0, 2, 0, 2, 0, 2, ...).
For n>=1, a(n) = 2^n - n + 1 = A000325(n) + 1. - Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 17 2009. (Corrected by Franklin T. Adams-Watters, Jan 17 2009)
E.g.f.: U(0) - 1, where U(k) = 1 - x/(2^k + 2^k/(x - 1 - x^2*2^(k+1)/(x*2^(k+1) + (k+1)/U(k+1)))). - Sergei N. Gladkovskii, Dec 01 2012
From Colin Barker, Mar 14 2014: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3) for n>3.
G.f.: (1-2*x+2*x^3) / ((1-x)^2*(1-2*x)). (End)

A084172 a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4).

Original entry on oeis.org

1, 2, 4, 9, 19, 40, 82, 167, 337, 678, 1360, 2725, 5455, 10916, 21838, 43683, 87373, 174754, 349516, 699041, 1398091, 2796192, 5592394, 11184799, 22369609, 44739230, 89478472, 178956957, 357913927, 715827868, 1431655750, 2863311515
Offset: 0

Views

Author

Paul Barry, May 18 2003

Keywords

Comments

Original name was: Generalized Jacobsthal numbers.
Sums of rows of the triangle in A109225. - Reinhard Zumkeller, Jun 23 2005

Programs

  • Magma
    [2^(n+2)/3-(-1)^n/12-(2*n+1)/4: n in [0..35]]; // Vincenzo Librandi, Jul 05 2011
  • Mathematica
    LinearRecurrence[{3,-1,-3,2},{1,2,4,9},40] (* Harvey P. Dale, Nov 13 2013 *)

Formula

a(n) = 2^(n+2)/3 - (-1)^n/12 - (2*n+1)/4.
G.f: (2*x^3 - x^2 - x + 1)/( (x+1)*(1-2*x)*(1-x)^2).
a(n+2) = a(n+1) + 2*a(n) + n, a(0)=0, a(1)=2.
a(n) = A001045(n+1) + A083579(n).
a(n+1) = 2*a(n) + floor(n/2). Franklin T. Adams-Watters, Oct 17 2013
a(n)+a(n+1) = A095768(n+1). - R. J. Mathar, Apr 15 2024

A135087 Triangle T(n, k) = 2*A134058(n, k) - 1, read by rows.

Original entry on oeis.org

1, 3, 3, 3, 7, 3, 3, 11, 11, 3, 3, 15, 23, 15, 3, 3, 19, 39, 39, 19, 3, 3, 23, 59, 79, 59, 23, 3, 3, 27, 83, 139, 139, 83, 27, 3, 3, 31, 111, 223, 279, 223, 111, 31, 3, 3, 35, 143, 335, 503, 503, 335, 143, 35, 3
Offset: 0

Views

Author

Gary W. Adamson, Nov 18 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  3,  3;
  3,  7,  3;
  3, 11, 11,  3;
  3, 15, 23, 15,  3;
  3, 19, 39, 39, 19,  3;
  3, 23, 59, 79, 59, 23, 3;
  ...
		

Crossrefs

Programs

  • Magma
    [1] cat [4*Binomial(n,k) -1: k in [0..n], n in [1..12]]; // G. C. Greubel, May 03 2021
    
  • Mathematica
    Table[4*Binomial[n, k] -2*Boole[n==0] -1, {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, May 03 2021 *)
  • Sage
    def A135087(n,k): return 4*binomial(n,k) -2*bool(n==0) -1
    flatten([[A135087(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 03 2021

Formula

T(n, k) = 2*A134058(n, k) - 1.
From G. C. Greubel, May 03 2021: (Start)
T(n, k) = 4*binomial(n, k) - 2*[n=0] - 1.
Sum_{k=0..n} T(n, k) = 2^(n+2) - (n + 1 + 2*[n=0]) = A095768(n) - 2*[n=0]. (End)

A095767 a(n) = valuation(A004001(n),2).

Original entry on oeis.org

0, 0, 1, 1, 0, 2, 2, 2, 0, 1, 0, 0, 3, 3, 3, 3, 0, 1, 0, 2, 2, 0, 1, 1, 0, 0, 0, 4, 4, 4, 4, 4, 0, 1, 0, 2, 0, 0, 1, 0, 3, 3, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 1, 1, 0, 0, 0, 0, 5, 5, 5, 5, 5, 5, 0, 1, 0, 2, 0, 1, 1, 0, 3, 0, 1, 1, 0, 2, 0, 0, 1, 0, 0, 4, 4, 4, 0, 1, 0, 0, 2, 0, 0, 1, 1, 1, 0, 3, 3, 0, 0, 0, 1, 1, 1
Offset: 1

Views

Author

Benoit Cloitre, Jun 05 2004

Keywords

Crossrefs

Cf. A095768.

Programs

  • Mathematica
    a[1] = a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; f[n_] := Length[ NestWhileList[ #/2 &, n, IntegerQ[ # ] &]] - 2; Table[ f[ a[n]], {n, 105}] (* Robert G. Wilson v, Jun 11 2004 *)

Formula

Partial formula: a(2^(n+1) - n + i) = n for 0<=i<=n.
Showing 1-5 of 5 results.