cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095847 Lucas-Lehmer residues for Mersenne numbers with prime indices.

Original entry on oeis.org

1, 0, 0, 0, 1736, 0, 0, 0, 6107895, 458738443, 0, 117093979072, 856605019673, 5774401272921, 96699253829728, 5810550306096509, 450529175803834166, 0, 44350645312365507266, 271761692158955752596, 2941647823169311845731
Offset: 1

Views

Author

Eric W. Weisstein, Jun 08 2004

Keywords

Comments

If a(n) = 0, then 2^prime(n) - 1 is a prime greater than 3. - Alonso del Arte, May 09 2014
For n > 1, 2^prime(n) - 1 is prime if and only if a(n) = 0. - Thomas Ordowski, Aug 12 2018

Examples

			The first term is 1 since 4 mod 3 = 1. - Zvi Mendlowitz (zvi113(AT)zahav.net.il), May 10 2006
		

Crossrefs

Cf. A003010.

Programs

  • Mathematica
    (* First run the program for A003010 to define seqLucasLehmer *) Table[Mod[seqLucasLehmer[Prime[n] - 2], 2^Prime[n] - 1], {n, 20}] (* Alonso del Arte, May 09 2014 *)

Formula

First, s(0) = 4, s(i) = s(i - 1)^2 - 2. Then, a(n) = s(prime(n) - 2) mod 2^prime(n) - 1. - Alonso del Arte, May 09 2014