A095883
Let F(x) be the function such that F(F(x)) = arcsin(x), then F(x) = Sum_{n>=0} a(n)/2^n*x^(2n+1)/(2n+1)!.
Original entry on oeis.org
1, 1, 13, 501, 38617, 4945385, 944469221, 250727790173, 88106527550129, 39555449833828817, 22093952731139969213, 15041143328788464370373, 12273562321018687866908553, 11833097802606125967312406457
Offset: 0
F(x) = x + (1/2)*x^3/3! + (13/2^2)*x^5/5! + (501/2^3)*x^7/7! + (38617/2^4)*x^9/9! + ...
Special values:
F(x)=Pi/6 at x=F(1/2) = 0.51137532057552418592144885355...
F(x)=Pi/4 at x=F(sqrt(2)/2) = 0.74287348600976...
-
a[n_] := Module[{A, B, F}, F = ArcSin[x] + O[x]^(2n+3); A = F; For[i = 0, i <= n, i++, B[x_] = InverseSeries[A, x] // Normal; A = (A + B[F])/2]; 2^n* (2n+1)!*SeriesCoefficient[A, {x, 0, 2n+1}]];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 16 2022, after PARI code *)
-
{a(n)=local(A,B,F);F=asin(x+x*O(x^(2*n+1)));A=F; for(i=0,n,B=serreverse(A);A=(A+subst(B,x,F))/2);2^n*(2*n+1)!*polcoeff(A,2 *n+1,x)}
A048605
Numerators of coefficients in function a(x) such that a(a(x)) = arctan(x).
Original entry on oeis.org
1, -1, 7, -43, 4489, -49897, 20130311, -319053131, 329796121169, -62717244921977, 14635852695795623, -33233512260583073, 149490010959849868177, -3562767949848393597053
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
x - x^3/6 + x^5 * 7/120 + ...
- W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
- W. C. Yang, Composition equations, preprint, 1999
-
n = 28; a[x_] = Sum[c[k] k! x^k, {k, 1, n, 2}];
sa = Series[a[x], {x, 0, n}];
coes = CoefficientList[ComposeSeries[sa, sa] - Series[ArcTan[x], {x, 0, n}], x] // Rest;
eq = Reduce[((# == 0) & /@ coes)]; Table[c[k] k!, {k, 1, n, 2}] /. First[Solve[eq]] // Numerator
(* Jean-François Alcover, Apr 26 2011 *)
-
T(n, m):=if n=m then 1 else 1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum((2^i*stirling1(i, m)*binomial(n-1, i-1))/i!, i, m, n)-sum(T(n, i)*T(i, m), i, m+1, n-1));
makelist(num(T(2*n-1, 1), n, 1, 5)); /* Vladimir Kruchinin, Mar 12 2012 */
A072350
E.g.f. A(x) satisfies A(A(x)) = tan(x), where A(x) = Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)!.
Original entry on oeis.org
1, 1, 3, 17, 225, 3613, -42997, 8725357, 2116966081, -549193907111, -114757574954509, 117893333517545097, 14433599120070484321, -65568697910890921624715, 2968238619232726100394235, 86999609037195113208781248165
Offset: 1
a(x) = x/1!+x^3/3!+3*x^5/5!+17*x^7/7!+225*x^9/9!+3613*x^11/11!-42997*x^13/13!+...
-
a[n_] := Module[{A, B, F}, F = Tan[x + O[x]^(2n+1)]; A = F; For[i = 0, i <= 2n-1, i++, B = InverseSeries[A, x]; A = (A + (B /. x -> F))/2]; If[n<1, 0, (2n-1)!*SeriesCoefficient[A, {x, 0, 2n-1}]]]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Oct 29 2015, adapted from PARI *)
-
{a(n)=local(A,B,F);F=tan(x+O(x^(2*n+1)));A=F; for(i=0,2*n-1,B=serreverse(A);A=(A+subst(B,x,F))/2); if(n<1,0,(2*n-1)!*polcoeff(A,2*n-1,x))} \\ Paul D. Hanna, Dec 09 2004
Showing 1-3 of 3 results.
Comments