cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A095883 Let F(x) be the function such that F(F(x)) = arcsin(x), then F(x) = Sum_{n>=0} a(n)/2^n*x^(2n+1)/(2n+1)!.

Original entry on oeis.org

1, 1, 13, 501, 38617, 4945385, 944469221, 250727790173, 88106527550129, 39555449833828817, 22093952731139969213, 15041143328788464370373, 12273562321018687866908553, 11833097802606125967312406457
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2004

Keywords

Comments

It appears that, if arcsin(x) is changed to arcsinh(x) in the definition, the sequence obtained is the same except alternating in sign: 1, -1, 13, -501, ... - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Jul 16 2009
a(35) is negative. - Vaclav Kotesovec, Jan 06 2023

Examples

			F(x) = x + (1/2)*x^3/3! + (13/2^2)*x^5/5! + (501/2^3)*x^7/7! + (38617/2^4)*x^9/9! + ...
Special values:
F(x)=Pi/6 at x=F(1/2) = 0.51137532057552418592144885355...
F(x)=Pi/4 at x=F(sqrt(2)/2) = 0.74287348600976...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{A, B, F}, F = ArcSin[x] + O[x]^(2n+3); A = F; For[i = 0, i <= n, i++, B[x_] = InverseSeries[A, x] // Normal; A = (A + B[F])/2]; 2^n* (2n+1)!*SeriesCoefficient[A, {x, 0, 2n+1}]];
    Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Aug 16 2022, after PARI code *)
  • PARI
    {a(n)=local(A,B,F);F=asin(x+x*O(x^(2*n+1)));A=F; for(i=0,n,B=serreverse(A);A=(A+subst(B,x,F))/2);2^n*(2*n+1)!*polcoeff(A,2 *n+1,x)}

Formula

a(n)=T(2*n+1,1)*2^n*(2*n+1)!, T(n,m)=if n=m then 1 else 1/2(Co(n,m)-sum(i=m+1..n-1, T(n,i)*T(i,m))), Co(n,m)=T121408(n,m)=(m!*(sum(k=0..n-m, (-1)^((k)/2)*(sum(i=0..k, (2^i*stirling1(m+i,m)* binomial(m+k-1,m+i-1))/(m+i)!))*binomial((n-2)/2,(n-m-k)/2)))*((-1)^(n-m)+1))/2. - Vladimir Kruchinin, Nov 11 2011

A048605 Numerators of coefficients in function a(x) such that a(a(x)) = arctan(x).

Original entry on oeis.org

1, -1, 7, -43, 4489, -49897, 20130311, -319053131, 329796121169, -62717244921977, 14635852695795623, -33233512260583073, 149490010959849868177, -3562767949848393597053
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

A recursion exists for coefficients, but is too complicated to use without a computer algebra system.

Examples

			x - x^3/6 + x^5 * 7/120 + ...
		

References

  • W. C. Yang, Polynomials are essentially integer partitions, preprint, 1999
  • W. C. Yang, Composition equations, preprint, 1999

Crossrefs

Programs

  • Mathematica
    n = 28; a[x_] = Sum[c[k] k! x^k, {k, 1, n, 2}];
    sa = Series[a[x], {x, 0, n}];
    coes = CoefficientList[ComposeSeries[sa, sa] - Series[ArcTan[x], {x, 0, n}], x] // Rest;
    eq = Reduce[((# == 0) & /@ coes)]; Table[c[k] k!, {k, 1, n, 2}] /. First[Solve[eq]] // Numerator
    (* Jean-François Alcover, Apr 26 2011 *)
  • Maxima
    T(n, m):=if n=m then 1 else 1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum((2^i*stirling1(i, m)*binomial(n-1, i-1))/i!, i, m, n)-sum(T(n, i)*T(i, m), i, m+1, n-1));
    makelist(num(T(2*n-1, 1), n, 1, 5)); /* Vladimir Kruchinin, Mar 12 2012 */

Formula

a(n) = numerator(T(2*n-1,1)), T(n,m)=1/2*(2^(-m-1)*m!*((-1)^(n+m)+1)*(-1)^((3*n+m)/2)*sum(i=m..n, (2^i*stirling1(i,m)*binomial(n-1,i-1))/i!)-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1. - Vladimir Kruchinin, Mar 12 2012

A072350 E.g.f. A(x) satisfies A(A(x)) = tan(x), where A(x) = Sum_{n>=1} a(n)*x^(2n-1)/(2n-1)!.

Original entry on oeis.org

1, 1, 3, 17, 225, 3613, -42997, 8725357, 2116966081, -549193907111, -114757574954509, 117893333517545097, 14433599120070484321, -65568697910890921624715, 2968238619232726100394235, 86999609037195113208781248165
Offset: 1

Views

Author

Vladeta Jovovic, Jul 17 2002

Keywords

Comments

The inverse of this g.f. A(x) is the g.f. of A095885. - Paul D. Hanna, Dec 09 2004

Examples

			a(x) = x/1!+x^3/3!+3*x^5/5!+17*x^7/7!+225*x^9/9!+3613*x^11/11!-42997*x^13/13!+...
		

Crossrefs

Cf. A095885 (inverse).

Programs

  • Mathematica
    a[n_] := Module[{A, B, F}, F = Tan[x + O[x]^(2n+1)]; A = F; For[i = 0, i <= 2n-1, i++, B = InverseSeries[A, x]; A = (A + (B /. x -> F))/2]; If[n<1, 0, (2n-1)!*SeriesCoefficient[A, {x, 0, 2n-1}]]]; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Oct 29 2015, adapted from PARI *)
  • PARI
    {a(n)=local(A,B,F);F=tan(x+O(x^(2*n+1)));A=F; for(i=0,2*n-1,B=serreverse(A);A=(A+subst(B,x,F))/2); if(n<1,0,(2*n-1)!*polcoeff(A,2*n-1,x))} \\ Paul D. Hanna, Dec 09 2004

Formula

a(n)=(2*n-1)!*T(2*n-1,1), T(n,k)=if n=k then 1 else 1/2*(T059419(n,k)*k!/n!-sum(i=k+1..n-1, T(n,i)*T(i,k))). [Vladimir Kruchinin, Nov 11 2011]

Extensions

More terms from Paul D. Hanna, Dec 09 2004
Showing 1-3 of 3 results.