A178684
Partial sums of cardinalities of coalition sets A095941.
Original entry on oeis.org
0, 0, 1, 5, 18, 53, 138, 332, 757, 1661, 3546, 7424, 15328, 31336, 63618, 128531, 258811, 519956, 1042992, 2090009, 4185231, 8377158, 16762853, 33536516, 67086633, 134190278, 268401718, 536829625, 1073691505, 2147422558
Offset: 1
a(9) = 0 + 0 + 1 + 4 + 13 + 35 + 85 + 194 + 425 = 757 is prime.
A095944
Number of subsets S of {1,2,...,n} which contain a number that is greater than the sum of the other numbers in S.
Original entry on oeis.org
1, 3, 6, 11, 18, 28, 42, 61, 86, 119, 162, 217, 287, 375, 485, 622, 791, 998, 1251, 1558, 1929, 2376, 2912, 3552, 4314, 5218, 6287, 7548, 9031, 10770, 12805, 15180, 17945, 21158, 24883, 29193, 34171, 39909, 46511, 54095, 62792, 72749, 84132, 97125
Offset: 1
a(3) = 6 since the subsets {1},{2},{3},{1,2},{1,3},{2,3} are the only subsets of {1,2,3} which contain a number greater than the sum of the other numbers in the set.
-
r[s_, x_] := r[s,x] = 1 + Sum[r[s-i, i-1], {i, Min[x,s]}]; f[n_] := Sum[r[k-1, k-1], {k, n}]; Array[f, 50] (* Giovanni Resta, Mar 16 2006 *)
Accumulate[ Accumulate[q = PartitionsQ[ Range[1, 50]]]+1] - Accumulate[q] (* Jean-François Alcover, Nov 14 2011 *)
A341507
Number of nonempty subsets S of {1,2,...,n} in which all elements are strictly less than the sum of the other elements of S.
Original entry on oeis.org
0, 0, 0, 0, 2, 9, 28, 74, 178, 402, 872, 1842, 3821, 7830, 15913, 32161, 64761, 130091, 260911, 522749, 1046667, 2094797, 4191414, 8385079, 16772926, 33549239, 67102603, 134210207, 268426453, 536860171, 1073729049, 2147468499, 4294949383, 8589913467, 17179844335
Offset: 0
For n = 5 the a(5)=9 subsets are {2,3,4}, {2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, {1,3,4,5}, {2,3,4,5}, and {1,2,3,4,5}.
-
b:= proc(n, s) option remember; `if`(s<1, 2^n,
`if`(n*(n+1)/2 add(b(j-1, j+1), j=1..n):
seq(a(n), n=0..37); # Alois P. Heinz, Feb 13 2021
-
gf := (1 - x - x^2)/((1 - 2 x) (1 - x)^2) - QPochhammer[-1, x]/(2 (1 - x)^2);
CoefficientList[Series[gf, {x, 0, 34}], x] (* Peter Luschny, Feb 13 2021 *)
Showing 1-3 of 3 results.
Comments